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Preface

THis book is not for the engineer content with hardware, nor for
the biologist uneasy outside his specialty; for it depicts that mis-
cegenation of Art and Science which begets inanimate objects that
behave like living systems. They rcgulate themselvesand survive:
They adapt and they compute: They invent. They co-operate and
they compete. Naturally they evolve rapidly.

Pure mathematics, being mere tautology, and pure physics,
being mere fact, could not have engendered them; for creatures
to live, must sense the useful and the good; and engines to run
must have energy available as work: and both, to endure, must
regulate themselves. So it is to Thermodynamics and to s
brother 2p log p, called Information Theory, that we look for the
distinctions between work and energy and between signal and
noise.

For like cause we look to reflexology and its brother feed-
back, christened Multiple Closed Loop Servo Theory, for mech-
anical explanation of Entelechy in Homeostasis and in appetition.
This is that governance, whether in living creatures and their
societies or in our lively artifacts. that 1s now called Cybernetics.

But under that title Norbert Wiener necessarily subsumed the
computation that, from afferent signals, forecasts successful
conducts in a changing world.

To embody logic in proper hardware explains the laws of
thought and consequently stems from psychology. For numbers
the digital art 1s as old as the abacus, but it came alive only when
Turing made the next operation of his machine hinge on the
value of the operand, whence its ability to compute any com-
putable number. :

For Aristotelian logic, the followers of Ramon Lull, including
Leibnitz, have frequently made machines for three, and some-
times four, classifications. The first of these to be lively computes
contingent probabilities.

With this ability to make or select proper filters on its inputs,
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such a device explains the central problem of experimental
¢Pi5tn§mc}lugy. The riddles of stimulus equivalence or of local
circuit a}c:tinn in the brain remain only as parochial problems,

This is that expanding world of beings, man-made or begotten,
mnf:el_'ning which Ross Ashby asked, ‘How can such systems
organize themselves 7 His answer is, in one sense, too general and
1ts embodiment, too special to satisfy him, his friends or his fol-
lowers.

This book describes their present toil to put his ideas to work
50 as to come to grips with his question.

20th December, 1960.

WARREN S. McCuLLocH

1 The Background of Cybernetics

Introduction
CYBERNETICS is a young discipline which, like applied mathem-

atics, cuts across the entrenched departments of natural science;
the sky, the earth, the animals and the plants. Ifs interdisciplinary
character emerges when it considers economy not as an economist,
biology not as a biologist, engines not as an engincer. In each case
its theme remains the same, namely, how syvstems regulate them-
selves, reproduce themselves, evolve and learn. Its high spot is
the question of how they organize themselves.

A cybernetic laboratory has a varied worksheet — concept for-
mation in organized groups, teaching machines, brain models,
and chemical computers for use in a cybernetic factory. As pure
scientists we are concerned with brain-like artifacts, with evolu-
tion, growth and development; with the process of thinking and
getting to know about the world. Wearing the hat of applied
science, we aim to create what Boulanger,®! in his presidential
address to the International Association of Cybernetics, called
the instruments of a new industrial revolution — control mechan-
isms that lay their own plans.

The crux of organization is stability, for ‘that which is stable’
can be described: either as the organization itself, or some
characteristic which the organization preserves intact. ‘That
which is stable’ may be a dog, a population, an aeroplane, Jim
Jones, Jim Jones’s body temperature, the speed of a ship, or
indeed, a host of other things. ‘

In chemistry, for example, Le Chatellier’s Principle 1s a state-
ment that the equilibrial concentration of reactants in a closed
vessel is stable, for it asserts that the assembly will react so as to
nullify thermal or chemical disturbances. But the equilibrium,
which is always implied by the word stability, is rarely of this
simple kind, Jim Jones is in dynamic equilibrium with his
environment. He 1s not energetically isolated and his constituent
material is being continually built up and broken down and

11




12 AN APPROACH TO CYBERNETICS

interchanged. When we say ‘Jim Jones is stable’, we mean the
form, the organization that we recognize as Jim Jones, is invariant.
Again, if Jim Jones drives his motor car his behaviour is (statistic-
ally speaking) stable, and (in the sense that a destination is reached
and no collision occurs) Jim Jones and his automobile are in
equilibrium with their world.

Origins of Cybernetics

A great deal of cybernetics is concerned with how stability is
maintained with ‘control mechanisms’. One of the first of these
to be treated explicitly was Walt’s invention of the governor (a
theoretical analysis was offered by Maxswell in 1865). The device
illustrates a principle called negative feedback. A signal, indicating
the speed of a steam engine, is conveyed to a power amplifying
device (in this case, a steam throttle) in such a way that when
the engine accelerates the steam supply is reduced. Hence, the
speed is kept stable. The signalling arrangement is independent
of energetic considerations, and it is legitimate to envisage the
governor as a device which feeds back information in order to
effect speed control.

Physiological Sources

Perhaps the earliest cybernetic thinking comes within the compass
of physiology, where the kev notions of information feedback
and control appear as the ideas of reflex and homeostasis. In
1817 Magendie defined a reflex as an activity produced by a
disturbance of some part of the body which travelled (over the
dorsal nerve roots) to the central nervous system, and was reflected
(through the ventral nerve roots) to the point of origin where it
modified, stopped or reversed the original disturbance. The basic
idea of signalling and directed activity is apparent (the common
misinterpretation of a reflex as a mere relay action should be
avoided). The elaboration of this idea in the early part of the
present century, and the experiemental study of reflexes up to
and beyond Pavlov, is well known.

Whereas reflexis preserves the organism against the flux of
its environment, homeostasis counters the internally generated
changes which are prone to disrupt the proper structure and
disposition of parts in the organism. Homeostatic mechanisms
maintain the milieu internale of Claude Bernard, the proper
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values of acidity, water balance and metabolites — a body temper-
ature which the cells of the body can tolerate. The first compre-
hensive study was published by Cannon in 1932* and there is a
vast amount of recent work (to cite a few representative papers;
Stanford Goldman® treating blood sugar control as a feedback
mechanism, T. H. Benzinger® for a discussion of the thermal
regulator in the hypothalamus, and Magoun, Peterson, Lindsley,
and McCulloch® for a study of feedback in postural tremor).

In much, though not all, physiological control the brain is
chief controller, and in effecting control, chief recognizer, rational-
izer and arbiter. Hence cybernetic thinking stems also from
psychology and in turn makes comment. Studying the brain we
meet a feature common to most cybernetic investigations — the
assembly is so large that its details always, and its general outline
sometimes, remain necessarily obscure, Here the mathematical
models of our science are particularly valuable. One kind of
model is a network of formal neurones {a formal neurone is a
construct, depicting the least set of properties which a real
neurone, a constituent active cell of the brain, could possibly
possess). McCulloch, who pioneered this field has reached a
number of conclusions. In particular he and Pitts showed some
years ago %% 70 that plausible networks of these formal neurones
were automata capable of many gambits, such as learning, the
elaboration of gestalten and the embodiment of universals.
Hence, the corresponding modes of mentality are neither
surprising nor adventitious when they appear in the far more
elaborate real brain. :

Finally there is the guestion of “purpose’. All the homeostatic
and reflexive mechanisms are goal-directed and self-regulating.
There is no magic about this and, whilst we can discern the goal,
no mystery either. But when, as often happens, a goal is sought
by several interacting mechanisms, or several goals appear to
be sought by one, we might apply the term ‘purposive’ to the
resulting behaviour. There is no suggestion of a vital force (and
though we rightly marvel at the organization, there is no need to
introduce teleological concepts). In particular we are likely to
find purposive behaviour in assemblies like brains, which are
large and incompletely observed. But I do not wish to give the
impression that the generation of purposive or any other behaviour
is enlodged within a particular assembly. In cybernetics we are
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14 AN APPROACH TO CYBERNETICS

thinking of an organization. Citing McCulloch’s 1946 lecture,
‘Finality and Form® °. .. some re-entrant paths lie within the
central nervous system, others pass through remote parts of the
body and still others, leaving the body by effectors, returning by
receptors, traverse the external world. The functions of the first
are, at present, ill defined, the second constitute the majority of
our refiexes, the last our appetites and purposes . ..’ Their
totality is the organism we study in cybernetics.

Other Sources

In zoology and in embryology there used to be a problem equiva-
lent to the teleological dilemma of purposive behaviour. Here it
took the name equifinality. Driesch, for example, was led to
‘believe in a vital force, because the development of sea urchin
embryos seemed to be pre-determined ‘from outside’ since they
reached the same final form even though crassly mutilated. By
the early 1920s biologists were thinking in terms of organization
{there i1s a classic paper of Paul Weiss.® which bears this out)
and it became obvious that in 2 wholly pedestrian manner the
whole of an organization is more than the sum of its parts. The
mystique behind equifinality (which lay there because, from a
circumscribed point of view, the parts should add up to the
whole) evaporated like the apparent magic of purposiveness.
Von Bertalantiy's thinking in this direction exerted considerable
influence, not only in biology but also in the social sciences, and
he gave the name system to the organization which is recognized
and studied (we speculate about the system which is the organiza-
tion of a leopard and not about the leopard itself). Further, von
Bertalanfly realized that when we look at systems (which cyber-
neticians always do) many apparently dissimilar assemblies and
processes show features in common.” He called the search for
unifying principles which relate different systems, General
Systems Theory.

General Systems Theory found little acceptance in engineering
and had little relatior: to the physiological developments until
the mid-1940’s. About then, engineers had to make computing
and control devices elaborate enough to exhibit the troublesome
kinds of purposiveness already familiar in biology. Also it was
in the 1940’s that Julian Bigelow, then Rosenblueth and Wiener
realized the siznificance of the organizational viewpoint, and had
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the imsight to wed together the developments we have discussed
and the rigorous mathematics of communication engineering.

Definitions of Cybernetics

Thus, cybernetics was born. Since then it has been variously
defined. At one extreme, there is the original definition,
‘the science of control and mnununicatiun in the animal and the
machine,” advanced by Norbert Wiener® when he adopted the
word® in 1948 in the book Cybernerics which is the first complete
statement of the discipline (a paper® anticipates a part of the
arpument). At the other extreme is Louis Couffignal’s'® proposal,
put forward as an expansion in 1956, ‘La Cybernetique est
Part d'assurer l'efficacite de l'action.” The gap between science
and art is filled by a continuum of interpretations. Thus, Stafford
Beer!! looks upon cybernetics as the science of proper control
within any assembly that is treated as an organic whole. In
industry, for example, this could be the science of management.
Also he regards Operational Research, in its widest sense, as the
principal experimental method of cybernetics, the science. Ross
Ashby,® on the other hand, gives emphasis to abstracting a
controllable system from the flux of a real world (for abstraction
is a prerequisite of talk about control), and he is concerned with
the entirely general synthetic operations which can be performed
upon the abstract image. He points out that cybernetics is no
more restricted to the control of observable assemblies and the
abstract systems that correspond with them, than geometry is
restricted to describing figures in the Euclidean space which
models our environment,

For my own part,’® I subscribe to both Ashby's and Beer’s
view, finding them compatible. Their definitions are both included
by Wiener’s global dictum.

The cybernetician has a well specified, though gigantic, field of
interest. His object of study is a system, either constructed, or so
abstracted from a physical assembly, that it exhibits interaction
between the parts, whereby one controls another, unclouded by
the physical character of the parts themselves. He manipulates
and modifies his systems often using mathematical techniques,
but, because in practical affairs cybernetics is most usefully

* The world ‘Cybernetics’ was first used by Ampére as the title of a
sociological study. It is derived from the Greek word for steersman.
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applied to a very large svstem, he may also build mechanical
artifacts to model them. Simply because the particulars are
irrelevant, he can legitimately examine such diverse assemblies
as genes in a chromosome, the contents of books in a library
(with respect to information storage), ideas in brains, government
and computing machines (with respect to the learning process).

Common Misconceptions

it is easy to misinterpret the whole idea and conclude that
cybernetics 1s a trivial or even meaningless pursuit. We have
to answer the kind of criticism offered by Buck - that
anything whatever can be a system —according to most cyber-
netic definitions of the word. But I believe an answer can be
given, providing we do not confuse the strict identity of principle
between the workings of several assemblies, which the cvber-
netician tries to embody in his abstract system, with mere facile
analogy. The confusion does occur when people over-simplify
the supposed activities of a cybernetician, perhaps, for a popular
account of them, by expressing these activities in terms of a
single experiment.

Let us suppose, for example, that Mr X is building a cybernetic
model of some region of the brain. Mr X is approached by Mr
Y who asks his profession. ‘Cybernetician,” says Mr X. ‘Such
nonsense,” says Y, ‘I've never heard of it, but,” he adds, ‘I can
see you're making a model of the brain. Be sensible and tell me
whether you are a psychologist, or an electronic engineer.” If Mr
X mnsists that he is neither, but a cybernetician, Y will make some
private reservations and humour the man, pressing Mr X to
describe his activity ‘as though he were a psychologist’ or ‘as
though he were an electronic engineer’, because he can ‘under-
stand that sort of language’. For Y 1s convinced that X is making
some electrical imitation of the brain. But if the device is a cyber-
netic model, then it is almost certainly a very poor imitation. In
consonance with Beer® I submit that the workings of a cybernetic
model are identical with some feature in the workings of a2 brain
which is relevant to the control within a brain. Most likely, this
feature is nor readily describable in terms of psychology or
electronics. So, having missed the point, Y is apt to depart under
the impression that X is bad at psychology and bad at electronics
and a little demented.
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It is easy to cite brain models which are merely imitations;
most well-behaved robots, most of the tidy automata that imitate
a naughts and crosses player, nearly all of the maze solving
machines (though there are some, like Deutsch’s Rat,'s which are
used explicitly to illustrate an organizational principle rather
than to imitate a response). There are not so many cybernetic
models to choose from, but one of them, made by Ashby'® and
called the Homeostat, admirably illustrates the distinction. It
is made up of four interacting regulators and an independent
switching mechanism which changes the interconnections between
these elements until a stable arrangement is reached. It can (from
the viewpoint of psychology and engineering respectively) be
dubbed a ‘brain-like analogue’ and a ‘device for solving differen-
tial equations’, for it does, rather imperfectly, display a brain-
like behaviour and it will, rather eccentrically, solve differential
equations. Its imperfections as an equation solver (which it is not
meant to be) are obvious from its construction and have met with
a good deal of heavy-handed criticism. Its imperfections as a
brain-like analogue (which, once again, it is not meant to be)
occur because at the level of functional analogy the organization
of a homeostat is not particularly brainlike. It is only when we
come to the level intended in the cybernetic abstraction that the
self-regulation in a homeostat is identical with the self-regulation
in a brain, and with reference to this feature the homeostat is a
cybernetic model of all brains.

Summary

To summarize, a cybernetician adopts, so far as possible, an
attitude which lays emphasis upon those characteristics of a
physical assembly which are common to each discipline and
‘abstracts’ them into his ‘system’.

This is not a prudent methodology, for it runs the risk of
seeming to be impertinent. It is justified in so far as it does lead
to effective control procedures, efficient predictions, and accept-
able unifying theories (and whilst this is true of any science, the
sanctions are rightly enough weighted against a Jack of all
trades). But the risk, on balance, is worth while, for the cybernetic
approach can achieve generality and yield rigorous comments
upon organization.
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2 Learning, Observation and Prediction

OBSERVERS are men, animals, or machines able to learn about
their environment and impelled to reduce their uncertainty about
the events which occur in it, by dint of learning. In this chapter
we shall examine human observers who, because we have an
inside understanding of their observational process, belong to a
special category. For the moment, we shall not bother with
HOW an observer learns, but will concentrate upon WHAT he
learns about, 1.e. what becomes more certain.*

As observers we expect the environment to change and try to
describe those features that remain unchanged with the passage
of ime. An unchanging form of events due to the activity within
an assembly is called a behaviour. The behaviour of a steam
engine is a recurrent cycle of steam injection and piston move-
ments that remains invariant. The behaviour of a cat is made up
of performances like eating and sleeping and, once again, it is an
invariant form selected from the multitude of things a cat might
possibly do. The behaviour of a statue is a special case, for the
statue is immobile, or to use an equivalent formalism, it changes
at each instant of time mnto itself. We shall neglect the special
case entirely. An ‘assembly’ is the dynamic part of an observer’s
environment, a picce of the real world, which is freely supplied
with energy. Although the energetics do not immediately concern
us, the assembly embodies one or many more or less regular
modes of dissipating the energy — steam expansion or metabolism
—as a result of which it produces an unlimited supply of obser-
vable events.

The Consequences of Uncertainty

When we say that our uncertainty about the environment has
been reduced we mean that a larger number of the behavioural
predictions we make are turning out to be right. But I take as

*(17) is a comprehensive textbook dealing with scientific observa-
tion.
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an axiom that our uncertainty about the environment cannot
be entirely removed. Any observation of the real world is fallible
and occupies a definite interval Az,

On the other hand, predictions are always dogmatic (though
the dogma can be modified in the light of further evidence). The
common usage ‘I predict event 4 with probability 0-8 and event
B with probability 0-2°, is no exception. This statement 1s
a shorthand version of ‘I predict (with certainty) that the value
of a variable called the probability of A4, namely p(A4)equals0-8,and
the value of a corresponding variable for B, namely p(B) equals
0-2’. In other words, we are not predicting events, but
certain abstract entities called the probabilities of events which
can be variously interpreted, for example, in the present case,
as an assertion that if either 4 or B (but no other event) were
able to occur upon many occasions, 80 per cent of the time the
occurence would be A, and 20 per cent of the time it would be B.
Thus, it follows from our axiom, that we do not make predic-
tions about a piece of the real world, an ‘assembly’ as such,
which is unknowable in detail. Rather, we make predictions
about some simplified abstraction from the real world -
some incomplete image — of which we can become certain
(the probability model is, of course, an abstraction of this
kind). Subject to some important qualifications, which will
appear in the discussion, this simplified abstraction is a
‘system’.

The Type of Uncertainty

What is an observer uncertain about? In the first place an
observer, absurd as it sounds, may be uncertain about his
objective, that is, about the kind of predictions he wishes to
make. This is rarely the case so far as a scientific observer is
concerned. A scientist usually knows whether he wants to make
clinically useful observations, commercially useful observa-
tions, or observations compatible with the hypothetico-deductive
structure of physics. On the other hand, there are cases of dilet-
tante observation, where the objective is not obvious at the out-
set and only becomes so when some tentative knowledge has
been gained. This situation is not readily analysed, for we can
only speak about a source of uncertainty relative to some
objective or other, i.e. clinical, commercial or physical prediction
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making and for the moment we shall deal exclusively with those
cases where the objective is specified.

Secondly, an observer with an objective has a structural
unceriainty about the kind of assembly he is dealing with and
the measurements that are relevant. Take, for example, a brain
and the objective of investigating the auditory mechanism. The
observer is uncertain about the anatomical regions that perform
various computations and even about the validity of dividing
the auditory mechanism into functional parts. In turn, he is
uncertain of the inquiries to make about a brain; where, for
example, to place the recording electrodes.

Structural uncertainty about metabolism entails ignorance of
the hierarchical arrangement of the enzymes which catalyse the
reaction: or, at a deeper level, about whether enzymes are the
active catalysts. Structural uncertainty about an industry is
icnorance of the flow diagram to represent the interchange of
energy, goods or information.

Fmally, supposing the observer has some structure and thus
some set of relevant measurements in mind, he 1s liabie to metrical
uncertainty about the values of these measurements. (See
Appendix 1.)

As a case in point, there is a moderately good picture of what
happens when a nerve impuise travels along a fibre, but physiolo-
gists would like to know more about the effect which is exerted
when the impulse reaches a synaptic connection between the
fibre and the cell body of another neurone. Our structural
notions of impulse transmission suggest measuring the depolari-
zation of the cell membrane in the synaptic region and it is
possible to obtain a very accurate measurement of the electrical
potential of a micro-electrode inserted into the region concerned.
But this, of course, is onlv an index of the measurement required.
The potential itself depends upon a number of unknown quan-
tities and although the observer is sure enough concerning the
measurement he ought to make (membrane depolarization) and
sure about the value of the index which is technically available
(micro-electrode potential) he remains uncertain about the value
of the relevant measurement. Indeed, according to our initial
axiom, an observer is bound to accept some minimum uncer-
tainty from one source or another, structural uncertainty or
metrical uncertainty or both. We shall rationalize the axiom in
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a rough and ready fashion by noting that the more detailed an

nhsci_'?er’s structural knowledge the more difficult are the
measurements he is impelled to make

The Source of Uncertainty

Uncertainty stems from ourselves and our contact with the
world. A real observer is able to recognize some, but not all,
possible forms of behaviour. These recognizable forms are his
percepts and there is a finite set of them. We have all experienced
the sensation ‘I can’t put my finger on anything’. Of course, we
mean that there is no form that we are able to recognize, not
that there is no form to be recognized.* Our ideas of chaos come
from percepis we have available, which, from our point of view,
are not chaotic, or, alternatively, from conventions,T which
have been accepted. From the whole gamut of orders that appear
in the world we can recognize only a few and these we can only
assimilate at a limited rate, through observations at Ar apart.

Whilst the ultimate restriction is imposed by our own capa-
bilities, we are commonly up against other and artificial difficul-
ties, Because of these the object of the study appears to be en-
closed in a container, the so called ‘Black Box’, to which we, as
observers, have incomplete access. A ‘Black Box™® situation gives
rise to either structural or metrical uncertainty or both. In the
simplest case, the assembly, a piece of electrical equipment, for
example, is literally enclosed in a black box with input and output
connections.

Tests applied at the input and output vield some information
about the equipment, but will not specify its condition unam-
biguously. Further tests would involve opening the black box and
this is disallowed either by a capricious rule or because the equip-
ment must be tested whilst it is functioning (the equipment may
be a running dynamo which cannot be stopped for testing). A
business efficiency expert allowed to see some, but not all, of a
client’s books is in a somewhat analogous position. So is an

* We take it, as a matter of belief, that the world is such and we are
such that we sce some order in the world. As Rashevsky *° puts it,
this much must be admitted in order to make science possible.

$Such as the convention that a set of uniformly distributed particles
1s more chaotic than a configured set of particles. Whilst it 1s a very

useful convention, there is nothing sacrosanct about this, as Beer has
pointed out.”

............
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ecologist who, in order to study the interactions within an
animal community, is bound to interfere with the ecological
balance.

Individuals circumvent their imperfections by forming a sim-
plified abstraction of the real world, through learning and
concept formation (as a result of which, amongst other things,
they learn to recognize new percepts). This abstraction, of course,
is a private image, but it allows them to deal with and decide
about their environment. On the other hand, just because of our
human limitations there is advantage to be gained if a group of
observers, anxious to make the same sort of predictions, com-
municate with one another and in place of many private images,
build up one commonly understood abstraction (such as the
hypothetico-deductive structure of science). This will be a public
image of the world within which all observations are assimilable
and in terms of which behavioural predictions are made. An
observer who subscribes to the plan, must limit himself to observ-
ations that are mutually intelligible and which can be assimilated.
Again, the rules of deduction which apply in the abstract structure
(and on the basis of which these predictions are made) must be
rules which have met with public approval.

Definition of a System
We are now in a position to discuss a system of which the
simplified abstraction we have examined is a particular case. In
the first place, a system entails an a prion structure which
specifies the logical possibilitics an observer can talk about. We
shall call it a ‘universe of discourse’ and will denote it as U.
Sometimes U is a loosely related collection of names for objects
or events. At the other extreme U/ is an elaborate mathematical
model wherein names are related by manipulable calculi, so
that given one relation many others are deducible. In either case,
its names and relations and its deductive content (the ‘logically
true’ statements possible in /) exist in the observer's mind
independently of any assembly whatever. U/ does depend upon
the observer’s previous experience, his objective and his hunch
about a useful form of description.

Secondly, a system entails an identification L between the
names in U and those attributes of the assembly which the
observer regards as relevant to his objective. Hence L specifies
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the set of possible observations. At one extreme L is defined by
a statement like ‘I am looking out of an aeroplane window at
cloud shadows fleeting over the ground (I recognize shapes
distinguished by the categorical attributes “‘angular”, **bulbous”
and so on)’. In this case the ‘system’ is no more than a concept
of the cloud configurations, for the attributes are not wholly
communicable. At the other extreme L is the precise specification
of a reproducible experiment that a potential is measured to the
nearest millivolt at point x, a pressure at point y and so on. In
this case the ‘system’ is a public abstraction since the attributes
potential and pressure are commonly understood, As a result of
the identification the logically true statements in U become
plausible hypotheses about the relevant and observable attributes
of the assembly and we shall call the pair U, L, a reference frame. 2!
(See Appendix 2.)

The reference frame itself is a system. It satisfies a definition
proposed by Colin Cherry® that a system is an ‘ensemble of
attributes’. But it has no predictive value. In order to show how
it becomes of predictive value we shall first introduce a conven-
tion for representing U, L, called a ‘phase space’. Secondly, we
shall credit the observer with a special objective v,, namely to
make predictions about any behaviour in U, L. In other words, to
discover all he can about a given way of looking at the assembly,
Although ‘special’ v, is shared by nearly all ‘scientific observers’.
Perhaps it is also true that we are impelled to adopt v, by a belief
in the underlying regularity of the world, and that this regularity
will be apparent in the reference frame we have chosen.

Phase Space

Suppose the observer can unambiguously describe his attributes.
I he can, his senses can be replaced by instruments which con-
vert events from the assembly into numerically valued attribute
variables (including, possibly, two valued variables which equals
1, if an attribute is present and equals 0 if it is absent), labelled
X3, Xa, . . . X,, and displaved in a common modality (perhaps on
dials or meters). In the simplest case, the observer knows very
little about the assembly. It is a black box with m initially
unrelated outputs. By the usual convention, we represent these
outputs, the values of the x variables, as independent co-ordinates
in a phase space. If m = 2 the phase space will be a plane, as
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in Figure 1, if m = 3 a cube, and if m = 4 a four-dimensional
space.

The phase space i1s U. The chosen set of m instruments defer-
mine L. We now define the sfare of the system at any instant ¢ as
X ()= x; (1), x2 (1), ...xy (1), that 1s, as an instantaneous ob-
servation of all relevant attributes. Now X (/) is a point in U
located by marking off observed values of the attribute variables
along the co-ordinates of /. Observations can be made no more
often than each Atz Since no absolute value is assigned to A¢,
we may as well say 4r = 1. In this case a behaviour of the
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Figs. 1(1) and 1(ii). Each cell in a quantised phase space is represented
by a single point in the equivalent state graph. Points are connected by
lines with arrows showing possible transitions. Since the state need not
change, a line should emerge from each point and return. These lines
are omitted, for clarity.
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system 1s a sequence of states X (0), X' (1) ..., observable at t =
b

Because of the obsecrver's metrical uncertainty, observation
cannot be exact. Hence the dials may as well be marked in units,
an intermediate reading counting as the nearest marked figure.
In this case, the phase space is quantized into unit cells, and a
rcal observation can locate the state point within a cell, but with
no greater precision. Given these modifications, the state transi-
tion graph of Figure 1 (i) is equivalent to the phase space.

Notice, some structure has been introduced with our phase
space. It was tacitly assumed that the number *2’ on a dial means
a greater value than the number “1°, that ‘3’ is greater than ‘2’
and ‘4’ than ‘3. As a result, some transitions are prohibited in
the state graph (compare it with Figure 1 (ii)). Maybe this
determines foo structured a U (it might, if the attributes des-
cribed cloud shadows). In this case, the observer could resort
to a set of two valued variables, which merely indicated the
existence of an attribute. For the same number of variables
there are, of course, fewer states, but as in Figure 1 (ii) any state
transition 1s possible. On the other hand, if the observer knows
something about the structure of the assembly beforehand he will
choose a more structured U, for example, he may know that all
possible behaviours carry a state point along a line or between
a pair of lines and if so, he can restrict his system to this region
of U/, L.

Finally, as a point of nomenclature, when we do adopt the
state graph picture it seems more natural to talk about state
transitions, or state selections, occurring in discrete jumps rather
than behaviours Ieading the state point along a given path.

Procedure of an Qbserver with Objective vy
A system of predictive value is constructed in U, L, through the
empirical confirmation or denial of hypotheses. Each hypothesis
which tallies with an observation is tentatively ‘proven’, embodied
in U/, and its deductive consequences worked out to suggest
further hypotheses for testing. (From this point efforts are made
to disprove tentatively accepted hypotheses.)

The observer i1s mostly concerned with predictive hypotheses
about behaviour, that have the form, ‘given the locus of X () 15
A, the locus of X (¢ -+ 1) is B’. Such behavioural predictions are

N T, e T L T T o T
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advanced by the observer whenever the events in the assembly
move the state point in U, and they are tested by observing the
subsequent behaviour of the state point. (This is the effort to
disprove current hypothesis.) But when a prediction is consist-
ently confirmed and never denmied, it acquires the status of
an empirical truth on a par with logically true statements in U
(such as ‘an attribute cannot have two values at once’ or ‘to get
from x; = 1 to x; = 5, you must pass through values x; = 2,
xX;=3,x,=4"). In this case the behaviour is regarded as
entirely predictable and it can be embodied in a rule, or behavioural
equation (or alternatively it can be described by a behavioural
path in U). Any entirely predictable behaviour is called state
determined, and, by definition, an observer with objective v,
tries to specify as many state determined behaviours in U, L as
possible. Strictly speaking, an inductive procedure like this can
never lead to certainty, for, though a single negative case denies
an hypothesis, no number of positive cases entirely confirm it .24
Thus, we assume that at some point the observer becomes
confident that some of his predictions, which have never before
been denied, never will be denied.

Measurement of Uncertainty and of Information Conveyed
Given a well-defined set of elements, it 1s possible to measure the

amount of uncertainty with reference to this set. The reference
frame provides a set of states, hence a measure of uncertainty is
possible and is called the variety of the set. The simplest case
is the system in Figure 1 (ii), where, at any instant, each
state i1s equally likely to occur. Since there are n states, an
observer is initially uncertain about ‘which of n', or conversely,
the appearance of one particular state removes this uncertainty
and conveys an ‘amount of information’, selecting one of n
possibilities. Information and uncertainty, if expressed in an
additive form as logarithmic measures, are very simply related
indeed,
Uncertainty = — Information

Because of this, observation can either be thought of as ‘removing
uncertainty’ about a set of possibilities, or selections from the
set of possibilities can be thought of as a “source of information’.
We thus define the variety as +Log..n or the information

e
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initially conveyed per observation as —Log..n. As the observer,
using v, learns and as his system becomes of predictive value, the
information conveyed by the appearance of an event is reduced,
he can predict what will occur. If the system becomes entirely
predictable, and all behaviours state determined, when there 1s
no uncertainty about it, the information is reduced to 0. 50 we
must be careful to distinguish:

(1) The variety of the chosen reference frame U, L, which
remains for » unrestricted states always Log..n per observa-
tion. (The variety in Figure 1 (i) is less due to the restrictions of the
phase space.) ‘

(2) The variety of the system which the observer builds up in
this reference frame (or the variety measured with reference 10
the observer), which is initially Log..n, but which is reduced
as the system becomes of predictive value. If you like, the number
of possibilities contemplated by the observer = a* are reduced
and the system variety = Log..n".

There is no measurable variety of the assembly, or of the states
of the assembly, for in neither case is there a well-defined set of
possibilities. In order to have any measurable variety there must

be an agreed reference frame.
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3 The State Determined Behaviour

A BEHAVIOUR is state determined® if an observer, knowing the
state at 7, is able to predict the state at r + 1 with certainty.
Rephrased; a behaviour is state determined if X (1 + 1) depends
in a unique fashion upon X (¢) and, in the phase space, this
means that the path describing a state determined behaviour
does not bifurcate.

We describe the path by a behavioural equation: X ( + 1) =
X (r)- E. Where E is the transformation in co-ordinates x (the
mathematical instruction for changing point X (¢) into X (z + 1)).
If the behaviour described by this equation is state determined
E is a closed, single valued transformation, that is, the next state
is always one of the states in the phase space and the next state
is always uniquely specified.

For the state transition graph, the behavioural equation is
expressed in an equivalent but slightly different form. The states
are labelled 1, 2, . . . n. If the behaviour is state determined one
state is unambiguously defined at each instant, hence the state of
the graph is specified, at an instant 7, by a binary number J (1),
having n entries indexed by the state labels. Of these entries
n—1 are always 0 and one entry, with index corresponding to
the current state, is 1. If n = 4, for example, and the second
state iscurrentat s = 0, thenumberJ (0) = 0, 1, 0, 0. A behaviour
is a sequence of binary numbers:

JO)—J() ... ... J(r)
suchas 0,1,0,0,—0,0,1,0,.......1,0,0,0.

So the state transition at each step, if the system Is state deter-
mined, will be a closed, single valued, selective operation F upon
J(f)writtenasJ(r +- 1) = J(1)- F.

Since each entry J.(1) in the binary number J (1) is in one to

* Much of this chapter refiects the views of Ashby and his detailed
argument should be consulted.% 1? Detailed references will not be given.
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one correspondence, by indexing, with a state X, it is not difficult
to see that the two forms of the behavioural equation are equiva-
lent.

It is more convenient to express a state determined behaviour
as powers of a transformation than as a sequence of separate
operations. Thus, in the phase space, the state at ¢t = 2, X (2) =
X()E=XO)E E= X(0). E*oringeneral,att=r, X(r)=
X (0) - E". Similarly, in the state graph,J(r) = J(0) - F". Where E’,
F" are the r-th powers of the transformation E, F, and represent
concisely that the operation has been repeated upon r successive

occasions.

Equilibrium Behaviour

A moment’s consideration will convince you that (since the path
must be unique) a state determined behaviour must either con-
verge, as in Figure 2, to a fixed state called the ‘equilibrium
point’, or enter a behavioural cycle’ as in Figure 3. Either mode
of behaviour is called a stable equilibrium because, unless there
is some disturbance which moves the state point (or alters the
subsequent transformation), its behaviour remains invariant.

Fig. 2, Stable point in a phase space — arrows converge

Note: We use the convention of showing a few repre-
sentative behaviours in the phase space, by single lines.
In fact, there are indefinitely many lines.

Mathematically this is due to a property of the powers of
E and F. namely that forsomer = 1,2, ... and forsome /=1,
2, ... withn>L E=FE ttand FF = F'*".

Thus, if I = 1, we have the equilibrium 2 and if />1 we have
the equilibrium 3 represented by the sequences:

X=X+ D=...o0Jn=J¢+D=...for2
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and by
X(n=>X(r+1D...Xr4+D=X({)or
'th”r}#(r +D...Je+DF I
wi
X@O£X(r+ Dand J() # J(r + 1)* for 3.

(0

Fig. 3. A cycle

Since this is true of any state determined behaviour and since
a state determined system is made up of state determined
behaviours, we define a state determined system as a collection of
L identified state determined behaviours which tonverge to a stable
equilibrium in a given U (the system may be all of these or only
some) and it 1s demarked as a stable region in the phase space,
as shown in Figure 4.

Fig. 4. Stable region enclosed by dotted line

Not all equilibria are stable. A ball balanced on a pin, shown
abstractly in Figure 5, is in unstable equilibrium because the
slightest disturbance will displace it irreversibly. On the other
hand, a ball resting in a hollow is in stable equilibrium providing
that the disturbances able to push it around are not large enough
to move it over the edge of the hollow. (Instability is associated

* For any equilibrial state the selective operation Fis a permutation
of the position of the ‘1’ in J (f). This includes the identity permutation
that leaves °I” in the same position and corresponds to the equilibrium
point.
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with the uncontrolled dissipation of energy: stability with achieve-
ment of an energy minimum, and cyclic activity with controlled
dissipation. It is helpful to think in this way, providing that we
keep in mind that the behaviour in a phase space is an account of
observable events and makes no direct comment upon the ener-
getic aspects of the assembly.)

Fig. 5. Unstable point — arrows diverge.

Except in the “pure’ case, where the system is wholly isolated
and there are no disturbances the distinction between stable
and unstable equilibria is one of degree rather than kind. But
these are useful concepts and their imperfections need not
trouble us too much for we shall rarely encounter the ‘pure’
case of an isolated and state determined system. The great
majority of systems have many equilibria. Displacement of the
state point from one equilibria may lead (i) to another, or (i),
to some condition, true enough an equilibrium but one which
the observer cannot discern for it is outside U, L. This, if you
like, is real instability for nothing can be said about it,
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Fig. 6. To an observer the assembly enclosed by a dotted line looks like
the simulated model shown inside.

Working Models and Relations between Systems
A reference frame is chosen and imposed upon the assembly by
the observer and from his point of view the assembly ‘black
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box’ could be replaced by a literally constructed ‘black box’
which includes some device for producing the events which
are manifest as motions of the state points in U/ and some
filtering mechanism which selects the events of admissible
behaviours (from the set of all possible events). I have shown
the observer’s eye view in Figure 6 and it is essential to notice
that the filtering mechanism summarizes only those constraints
in the assembly which act upon the relevant attributes (not ali
the constraints that exist). Because of this any system forms the
basis for a working model or simulation of some facets of many
different assemblies and it is irrelevant what the model is made
from. Commonly, for example, working models are made using
electrical analogue computers and their logic is identical with
the observer’s eye view of Figure 6. The box of constraints, the
filtering mechanism, is some arrangement of parts in the com-
puter which, physically speaking, has equilibria that correspond
to the abstract equilibria, and behaviours that correspond to
abstract behaviours. The model is set in motion to generate all
possible behaviours by an auxiliary mechanism which feeds
energetic disturbances into the constraint box. In our abstract
picture, of course, these correspond with displacements of the
state point. But precisely the same arrangement of parts in the
computer can represent the spread of an epidemic, the spread of
rumours in a community,*? the development of rust on a piece of
galvanized ron, and diffusion in a semi-conductor.

It is natural to ask how models and systems are related. In the
case of models the answer is easy, for we have explicitly neglected
the choice of L. If two models, such as the ‘epidemic’ and the
‘rumour’ model are mathemically identical, we say they are
isomorphic. 1f they differ only with respect to detail, for example,
if each cycle in the first corresponds with an equilibrium in the
second, we say that the second model is a fomomorph of the
first (strictly, if the second is a mapping of the first which pre-
serves the group operation of the state transformation — here
matrix multiplication). Now the second, homomorphic model, is
also the observer’s eye view of an observer who had thrown away
some of the available information (in a carefully calculated
manner, so that his image is less detailed than but consistent
with the original). So, in this sense, we can say that two systems
are isomorphic or homomorphic. But, is this useful? On these
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PLATE 1 (1) Simulating a pupil-teacher system. Solartron EUCRATES I

(sce page 67).

(i) Murray Babcock’s adaptive reorganising automaton. Network connec-
tions are made by plugged leads between *neurone’ and ‘synapse’ sockets.
State is displayed on a neon tube matrix (see page 67).

(iit) A practical evolutionary system. Learning machine is marked ‘A’ and
thread structurcs are developed in dishes marked *B’. This demonstration
was set up by the author at the Symposium on the Mechanisation of Thought
Processes, held at the National Physical Laboratory, November, 1958,

P i L

A

— Ry ST T e ey T T W FREE O T ol

L i At b e A

R S IR e W iz TR It g

o e L e T L S . =k - ""h -



PLATE II (Above).
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grounds a system representing the motion of a roundabout ‘is
isomorphic with a circular argument. True, they both entail the
idea of going round, but that is the content of the isomorphism
and I am not entirely certain what it means. For the states of
the roundabout are not only different from the states of an
argument, they are described in a different and, at the moment,
incomparable language. I am disinclined to accept the utility of
mathematical relations between such states or the corresponding
systems. On the other hand, I am prepared to say that the systems
representing the ‘epidemic’, ‘rumour’, ‘rust’ and ‘semi-conductor’
assemblies are isomorphic because, although the states are
different, we can talk about them in the same language and
compare the L determined measurements we make,

According to this view, a pair of systems are comparable if
the L of their reference frames are comparable. In particular,
systems in the same reference frame must be comparable, and
this fact allows us to give a rigorous expression to the blackness
of the black box. Any state determined system is the homo-
morph of some more detailed system which is also state deter-
mined. Ultimately, if we believe in the underlying regularity of an
assembly, there 1s a state determined system of immense detail
which, due to our imperfections, we cannot directly observe.

Object Language and Metalanguage

For the rest of the discussion we shall adopt an omniscient
attitude and look externally upon the observer and his black
box. We are now talking about the observer rather than seeing
the world through his eyes, and, of course, we talk in different
terms. Since we shall use this gambit and others like it a good
deal, I shall call the observer’s language an object language®
(with words that refer to states in his reference frame) and our
language (in terms of which we talk about an observer) the
metalanguage. 1 am introducing the distinction at this point
because it will be convenient if we can look inside the observer’s
black box and know in greater detail than he does what kind
of assembly there is. To keep something tangible in mind I pro-
pose that the assembly is actually a town, with the road plan of
Figure 7, and the attribute variables are actually meters that
read the number of motor vehicles residing at a given instant
upon the labelled intersections in Figure 7. The observer is trying
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1o make sense of what we call ‘traffic flow’, and, in practice, when
the box is not completely biack, he may be more or less aware
that this is his job in life. Now, in this case, when we are talking
about ‘an observer’, both the metalanguage and the object
language are well determined.

There is a second innovation. So far we have thought of

Source of Activity Entronce X Black Box
(Vehicles) and Exit e /
(Yehicles)

Window X

AAAAAA

The view through Windaw X prajsmepis oy

ingide the BlockBox

O = TRAFFIC LIGNT
SinSinG PAD

D = TRAFFIL LILHT
STOP LAMP

Fig. 7. A black box and its interior
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observers who merely receive the events generated by an assembly.
But most observers are not content to watch and wait. They act
upon the assembly and induce the system to change states in a
satisfying manner. Thus, a dog is stimulated in a Pavlovian
conditioning experiment; a patient, guided by his physician,
energizes his own implanted electrodes and reports the results,
and our traffic observers may be allowed to create a local influx
of motor vehicles or connect up traffic signals. Notice, they need
have no more knowledge of whar they are doing than they have of
what they are measuring. But we know omnisciently. The logical
position is that an observer of this kind, a so-called participant
observer, is provided with a set of labelled buttons in addition to
his labelled dials. These buttons are his possible actions, and he
is told, at least, that each action induces some cogent change of
state in the system. But it is a necessary disgression to point
out that this is not always the case. (In particular it is not when
we discuss the interaction between real life students and adaptive
machines.) If two people are in conversation, for example, their
discourse takes place in an object language and we make com-
ments about the conversation in a metalanguage, possibly in
terms of psychology. These comments are objective, but the
object language itself may be concealed. We do not know
the participants’ reference frame. Words have implications for the
participants, of which we are unaware and, in general, we cannot
expect to make objective measurements of the interaction, iLe.
we cannot measure the information from one participant to
another.

Partitioning Systems

Suppose, speaking omnisciently, we know that motor vehicles
do not start or stop in town, but aim for the throughway by
the quickest route, that traffic flows into 4 and Bof Figure 7, and
that the rate of inflow is such that a stationary distribution of
motor vehicles will be built up over a relatively short interval.
In these conditions x,, xs, X5, x; and x, will assume positive
values and probably change, but x., x_ will be zero valued. We
assume also that the traffic flow from 4 exerts no appreciable
effect upon the traffic low from B (the throughway is a wide
road and the traffic signal connections are not made). An
observer, possibly ignorant of all the mechanism involved but
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observing the variables, will remark there are two substantially
independent subsystemns (namely, & — x.. x.. x; and ff = x,, x).
In other words, he partitions the variables into two subsets one
which we know refers to A and the other to B. Partitioning is
one important way to reduce the elaboration of a gigantic system
with vast numbers of equilibria. The gambit works whenever
there are structural constraints such as the components in a
computer, different processes in a factory, different tissues in an
animal or different traffic streams in a town.

The phrase ‘subsystem’ is natural enough if we happen to
know that the subset of variables refer to streams of traffic. But
a partitioned subset of variables is closely related also to our
concept of a ‘machine’* (not necessarily a collection of physical
parts but any entity which does a specific job). The relation is of
this kind. Suppose the participant observer could change x; and x,
at will (these variables being called the ‘input’ to the 'machine’ )
then x,, which is called the ‘output’ of the 'machine’ o would
change in a definite way. Commonly we say the output is a math-
ematical function of the input and in electronic machines it is
often dubbed the transfer function: x, = f; (x;, x») which, given
the extremely stringent conditions assumed a moment ago,
reduces to x, = x; -+ x.. In this case we know that a 1s a
‘machine for changing the distribution of motor vehicles’, and it
is tempting to say o is ‘the road layout’. But this would be wrong.
o is what the road layout actually does, specified by f;. An
observer need know nothing about motor vehicles and still see
the same machine, only he might call it ‘a machine for adding
two numbers y; and x5

But a participant observer may do more than ‘stimulate’. His
repertoire of actions is likely to include such things as C =
‘Introduce the traffic signal connection with sensing element at
a and stop lamps at b&. Obviously, this alters f; into some other
function f,, plausibly enough into:

x5 = fa (X3, Xs) = X3 + x(1 —2) with za positive, fractional
constant

* The term ‘machine’ corresponds with the current usage in this
field. A state determined subsystem is equivalent to the most elementary
logical paradigm a ‘Turing Machine'®® which has one binary input
and one binary output determined by its input and the state of the
Turing Machine when the input is applied.
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since congestion will occur at the traffic signal stop lamps and a
number of motor vehicles proportional to x, will filter along

D which has become, for them, a most direct route. We call C,
or anything that changes /. a ‘parameter’ of the subsystem or
machine.

It must be admitted that the distinction between an ‘input’
and a ‘parameter’ is a little arbitrary. When x; and x, increase
in the rush hour f will be changed. If x, is given a positive value
J will probably change and the observer is at liberty either to
define a new system, including x, or to regard x; as a parameter
of . Then the whole concept of a subsystem is “arbitrary’, in the
sense that it depends not only upon the ‘regularities’ in the
assembly which, from omniscience, we know ro exist but also
upon those the observer chooses to recognize.

Coupling Systems

Apart from the actions of a participant observer, a subsystem
can be affected by the other subsystems. Thus « can be affected
by B, in which case we say that & is coupled to . As a result of
a coupling the integrity of the subsystems is partly lost. How-
ever, it is still useful to distinguish between them if the manner
of coupling is specified by some function, say g to distinguish it
from /. It may be, for example that g (ff) which relates « to f§
involves only some of the variables of f or only some of the
states of fi (coupling is significant only if there is a particular
distribution of the traffic). In common with ‘actions’ the states
of f may act as either ‘inputs’ (as stimuli) or as parameter changes.
Whilst admitting that the distinction is tenuous it is still con-
venient to represent these possibilities separately. Hence, (using
our definition of a subsystem, as a relatively isolated functional
entity) we show subsystems as boxes and distinguish:

Fl o

Qutput state of (3 acts as input to oL
Fig. 8
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/.

(3 L

Qutput state of (3 chonges parameters of CC
Fig. 9

remembering in each case that the box does not necessarily
imply a collection of physical parts. Of these, Figure 8 may entail
coupling the trafhic light linkage d, ¢, of Figure 7 which stops
traffic flow along £ when x; increases beyond a limit, also to lamp
b, whereas Figure 9 may entail a device which renders the linkage
a, b operative if and only if x; exceeds this limit.

If the coupling is two-way, so that ff affects « and o affects .
we say that o and [ are interacting. When the interaction is very
severely restricted there is some point in talking about feedback
as we did in Chapter 1, and analysing the system in terms of
feedback theory. But most of the svstems that concern us are so
elaborate that the techniques of feedback theory are inapplicable.
Interaction by feedback makes the sub-systems very hazy and,
as mentioned in Chapter 1, gives rise to apparently purposive
forms of behaviour.

Of course, from our omniscient viewpoint, the black box
and the observer are merely a pair of subsystems; subsystems in
our metalanguage, however! In the upper picture, Figure 10(i)
I have tried to show what goes on in these terms when an
observer aims for v, (to obtain a participant observer connect
channel =: to make yourself a plain observer disconnect
channel Z). The lower picture refers to the next part of our
discussion,

Alternative Procedure

There 1s no guarantee that an observer, using v; will achieve a
state determined system. Some of the behaviours in his phase
space may remain ambiguous, like Figure 11, where 4 goes
sometimes to B and sometimes to C.

e
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In this case the observer may either:
(i) Examine a system of greater detail and diversity, so that
A becomes a pair of states, a, which always leads to B, and a,

which always leads to C as in Figure 12.

Fig. 12

(ii) Resort to statistical observation.

First of all, let us look at (i). We and possibly the observer know
that motor vehicles are being counted. They are discrete entities
and, unless the instruments are misfunctioning, they cannot be
counted more accurately! So it is only possible to improve the
measurements by reducing A4t and counting ‘more often’. Even
here a useful lower limit is set by the maximum speed of the motor
vehicles and we may as well assume that 4t is within the limit.
So the observer must look for a greater diversity of data, for
example, he must investigate more of the intersections of Figure 7,
since xj, Xs, . - « X, are only a subset of the possible measures
Xy, X35+ - - Xn, n > m, which are potentially available. This
does, of course, entail changing L and possibly also U (since
more, as well as different, variables may be needed to describe a
state determined system). Hence, the objective is no longer v,.
Instead, the observer is looking for a state determined system,
in any reference frame available (and we suppose that this search
is permitted). Unless some restriction is imposed, the search will
be haphazard. Thus, we assume that the observer wishes to dis-
cover a state determined system sufficient to make some specified
kind of prediction, for example, sufficient to control the traffic.
Any such objective will be called v, and the procedure adopted
by an observer will have the form 'Choose a reference frame
U,, L, and test for a state determined system in Uy, L,, but if
this is not achieved after a certain arbitrary effort, choose a
further reference frame U,, L, and if necessary another U,,L;,and
another U,, L, and so on’. (Figure 10 (ii).) Whilst the procedure

e iy
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for v, was essentially a matter of chance trial, v, is likely to involve
the elements of insight and invention. This becomes obvious
whein we consider the L an observer may choose. If the single
attribute ‘number of motor vehicles’ provides insufficient evidence
he may take the make and model of the motor vehicles into
account or, for that matter, the drivers’ occupations, the plays
that are running in town, or the day of the week.

Statistical Determinacy
Suppose that the observer is not allowed this Jatitude. His instru-
ments are given and he must stick to the method of Figure 10 (i ).
?&EHEE i]E' cannot split 4 into a, and a,, he may have to give up
in despair. On the other hand, it may be possible to neglect some
of th?: detailed state changes and make consistent statistical
assertions. But, this possibility depends very much upon the
assembly, and an observer can in no way guarantee success,

If he looks long enough for many, say 100, transitions to

take place from state 4 in Figure 12 an observer may be able to
conclude:

(i? That A4 always went either to B or to C.
(i) That it went into B 80 times, and C 20 times, out of 100,

To summarize the information he writes proportionsy , , = 0-8
andn , = 0-2. These empirical estimates of the transition proba-
bilities from state 4 to state B. and state 4 to state C, were
obtained by ‘time averaging’ the results.

There is, however, a basically different way to glean statistical
dftta. Suppose there are many, say 100, observers looking at
different, but macroscopically similar, assemblies in the same
reference frame. If 80 of them report simultaneously, perhaps,
thfl[ A goes into B and 20 of them report that 4 goes into C.
thisknowledge may also be summarized by proportionsyu ,, = 0-8
and g, = 02, which are also empirical estimates of transition
probabilities, obtained in this case by a process of averaging
overan ensemble of systems’. But an ensemble average is possible
if and only if the reference frame U, L is commonly agreed, and
the observers are in a position to agree about what assemblies
are macroscopically similar. Traffic observers, perhaps, are
unlikely to employ an ensemble average, but the device is often
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used in psychology (80 subjects passed a test, 20 failed a test)
and in any case we need the concept for our later discussion.

Returning to the single observer: if on repeated inspection the
values of 7 ,; and 1, do not change he will become convinced
that there is an underlying statistical constraint because of whick
these proportions exist. In other words, he uses the consistency
of n,s and 7 . asempirical evidence in favour of an hypothesis
that there is regularity in the world, and infers the existence of a
statistical structure (which determines the detailed behaviour
somewhere within the black box). Suppose, that for each state
i=1,2,...nmand j=1. 2, ...n it 15 true that empirical
estimates 5, are unchanging, an observer may legitimately infer
a set of related statistical constraints that determine a statistical
system. Because the estimates are invariant the statistical system
is said to be a srationary system. One important consequence of
stationarity is that for long enough or large enough samples
Ny = M p;, Where p, represents an actual statistical con-
straint which determines the transition probability from state i to
state J.

It is wise to be wary of the concept ‘stationary statistical sys-
tem’, It allows us to predict the range of behaviour of a single
observable system or the range of behaviour manifest amongst
an ensemble of observable systems, given that the constrainis p,,
do exist. But statements about it have no tangible referent. They
refer to a set of observables not any one. However, in so far as
the observer’'s inference of stationary valued transition proba-
bilities p,, is valid, the statistical system is necessarily of a kind
called *Markovian’, and in a sense which we shall discuss, any
*Markovian’ system is statistically determinate.

Markovian Systems

The probability that a Markovian system will occupy each of its
states at t + 1, depends only upon its state at 7, and probabilistic
transformation P made up of fixed transition probabilities p,;.
The state of a state determined system at 7 + 1 depends only
upon its state at ¢, and a fixed state transformation. The obvious
correspondence between these two assertions impels us to say
that the Markovian system is statistically determinate, indeed
the state determined system with transformation F, is a special
case of the Markovian system, achieved by replacing the proba-
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bilities p,; in P, by certainties. Since inductive procedures do not
lead to complete certainty it is, perhaps, better to say that all
systems are statistical. ‘Determinate’ is the name we give to a
system with particularly ‘consistent’ statistics.

Before going further, let us get rid of an apparent restriction.
The states of a Markovian system depend only upon the imme-
diate past, but an observer could perfectly well appreciate much
longer-term dependencies. Suppose he does (and that these
dependencies are consistent) it is always possible to represent
his knowledge in terms of an ‘expanded’ system which is still
‘Markovian’, but which has a larger number of possible states.
These additional states are time dependent. In place of { and j,
we have ‘i preceded by i, '/ preceded by j’, '/ preceded by i°, ¥
preceded by j° and so on. A Markovian system is thus rather
comprehensive.

It is represented by a state transition graph, as in Figure 1,
each pair of states /, j being associated with a transition proba-
bility, that is, a number | >p,>0. Since some transition must
occur at each instant (possibly the transformation of a state
into itself) the sum of the probabilities associated with arrows
moving away from a state (including the arrow which moves
away and returns) must equal 1.

By analogy with F we can construct a probabilistic transforma-
tion of the binary number which represents the state of the system
at t = 0, by summarizing the p, in a transition probability mat-
rix P. (See Appendix 3).

However, the transformation no longer leads to a unique state
but to a probability distribution or in other words, a statement
foreach of the n states of their probabilities of occurrenceat ¢t = 1,
given the state specified at 1 = 0. We call this distribution.

Py (EJ = a (U;Fm (l)i - o Pl {-I}
and write

p, (1) = J(0)-P, or since J (1) is a special case of p (1) with all
entries 1 or 0, p.(1) = p, (0)P.

We continue, as with the state determined system but obtaining
further distributions
Py {2) T F&(I}'P = p,(0)y P, orfort = r
() = p, r—1yP = p, (O)-F

= T
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A distribution p, (1) is the state of the Markovian system and a
sequence of distributions is a behaviour of the Markovian system,
conditional upon the chosen initial state .. Instead of choosing 2
particular 1nitial state we could have chosen a probability

distribution — in particular — if we had chosen the distribution

kol . :
p.0)= = ; so that each state isequally likely, the resulting

distributions would be the unconditional states of the Markovian
system.

We can also construe the statistical transformation as an
instruction to take a four-sided, or in general, an n-sided dice
and to bias it according to the entries in the row of P which
corresponds with our chosen initial state. The dice is thrown and
the outcome determines the state at r = I, of a hypothetical,
determinate system (let us call it a representative system) which
i1s one of a statistical ensemble. The row of P selected by this
outcome is used to bias the dice for a second throw, the outcome
of which selects the state of the representative systemat ¢t = 2, and
so on. In the phase space the sequence of states generated by
dice-throwing delineates the behaviour of a single represenrative
system.

Consider a large number of dice thrown simultaneously, many
from each different initial state and each according to these
instructions. Each one determines a representative system and is
assigned to a point in the phase space (the whole set of state
points forming an ensemble). A sequence of throws generates a
behaviour of each representative system and the points move.
If the number of representative systems, and hence of state
points is very large, we can neglect their individual behaviour and
consider only the density of points, that is, the behaviour of the
ensemble. The behaviour of the ensemble is the behaviour of the
Markovian system.

Stochastic Models

Since dice throwing exhibits all possible behaviours, given the
statistical constraints of a Markovian system, it is a stochastic
model (analogous to a determinate model) for simulating the
behaviour of an assembly. The constraints represent stock-
holding parameters, demand functions, and value fluctuations
(or any other statistically known gquantity), pertinent to a
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business or an industrial process. The simulation is called a
Monte Carlo procedure and is programmed on a digital computer.
Each initial state of the stochastic model corresponds with an
initial displacement of the determinate model. Each set of repre-
sentative systems started from a given state, corresponds with a
single behaviour of the determinate model. The point needs
emphasis perhaps, because each representative system in the set
is, of course, a determinate system, which is however state deter-
mined by the dice and by the statistical constraints jointly.

Statistical Equilibrium (see Appendix 4)

By analogy with a state determined system any Markovian system
reaches statistical equilibrium. In equilibrium it is characterized
by averages #7; and, regarded as an information source, it has a
measurable variety. For 7 states, the maximum variety is Log. .,
the variety of the reference frame, without any statistical con-
straints. But by learning about the », an observer can reduce
the variety of the system, as he sees it, to a minimum figure
which depends upon P. This variety is equivalent to Shannon’s?®
statistical information measure on the system. It 1s a maximum

LR L] - * W ]J i, = - 1,.;. - -
when the equilibrium distribution p*=- - ~indeed, in this
ey S I

case, it is Log.,n. Unegual probabilities p,, p;, reduce the variety.
Conditional constraints p,; render the state of the system more
predictable and decrease the variety still further, by an amount
called the redundancy of the source. (see Appendix 5.)

Non-Stationary Systems
Suppose there is an honest to goodness statistical whirligig, with
dice throwers and bits and pieces of mechanism to determine the
Dy, all enclosed in a black box. The whirligig has » different
states and each of these is accessible to an observer — when the
model is in a particular state a particular lamp is illuminated.
However, it could be rather a subtle device, a ‘learning’ machine,
in which the p,; changed from moment to moment, in which
case we write p;; (f) in place of p, and notice that the output of
our learning machine is non-stationary.

Taking an omniscient view, the rules which change the statis-
tical constraints are part of the specification (the rules will have
the form ‘p, (1) is some mathematical function of the previous
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states’), and the whole thing, rules and all, is an expanded
Markovian system. An observer who looks long enough can
make valid estimates 7, of the constraints. ‘Memory’ or the
ability to ‘learn’ is not a property of the system, but of _th::
relation between the system and an observer. M_ﬁfshby pmntf:
out, any system with many equilibria will exhibit ‘memory

if some of its states are indistinct. Of two observers, looking at
the same assembly, one — who is able to distinguish few states—
will say his system has a ‘memory’, whereas the other —able to
distinguish many states —will say his system has none (see
Appendix 6).

'pgiscarding omniscience let us look at a black box thmu*gh‘ihc
eves of an observer who can only form estimates7;; of a limited
set of states. The behaviour of the system may be whnl;}y intrac-
table. On the other hand, the behaviour may be described by a
Markovian system, say Py, which reaches a temporary stable or
metastable equilibrium and remains there for an interval. Then,
rather suddenly, the behaviour changes. The new behaviour is
represented by a different Markovian system, say P, which again
reaches a metastable equilibrium, then, in turn, gives place to
P, and P,. _ _

Animal learning is a case in point. When primates are le;ammg
to solve problems, their behaviour, though not strictly stationary,
remains approximately so; the learning curvescan be r—:xtrapnla_-.t::d
with confidence, and the behaviour is predictable. Then, rather
suddenly, the creature learns a new concept ;r:nd _subsequt:ntlr
deals with problems in a different way which it sticks to for a
further appreciable interval. Once again, the learning curves can
be extrapolated and a different kind of behaviour becomes
predicable. But in between the two behavioural modes 'thﬁl'ﬂ is
a discontinuity and prediction of the subsequent mode, given the
initial mode, is impossible unless we make use of averages over
an ensemble of animals. H. Harlow, for example?®, distinguishes
between repetitive learning which is predictable aml _the process
of concept or ‘set’ learning which entails discontinuities that can
be interpreted as ‘insightful’ behaviour.

The statistical system we have examined is :trar:ta’:gi; h-:acaysa,
by analogy with a determinate system, it can be partitioned into

statistical subsystems. An equivalent black box would contain a

whirligig having a set P of possible transition matrices P; and a
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selective operation F* to choose different members of P at
different instants. On the other hand, if the system cannot be
partitioned (or if the selective operation acts too fast to allow
an observer to sample each P)) the estimates #, are worthless
and the observer must rely upon ensemble averages s

The difficulty is to decide which systems are macroscopically
similar. Given a lot of identical molecules, we are on safe ground
in saying that ‘macroscopically similar’ collections are those
retained at the same temperature and pressure. But, it is less
convincing to hear that ‘macroscopically similar’ learners are
individuals selected from the same breed of rat.

The Self-Organizing System _
A non-stationary system becomes ‘self-organizing’ when there is
uncertainty about the criteria of macroscopic similarity. Defini-
tions are offered by Beer®?, Pringle®, Von Foerster®®, and myself %8
. An observer is impelled to change his criteria of similarity
(hence, also, his reference frame) in order to make sense of the
self-organizing systems, behaviour and he changes it on the basis
of what he has already learned (by his interaction with the
system). Typically self-organizing systems are ‘alive’ though we
shall examine some which have been embodied in ‘inanimate’
materials. Let us take ‘man’, whom most of us would agree is a
self-organizing system. A man is any member of a well-specified
set of men. But this set can be well-specified (that is, specified in
a way that meets common approval) in a vast number of ways,
according to an observer’s objective. Man, for example, may be
specified anatomically (two legs, head, and so on), or alternatively
as a decision maker which influences and is influenced by his
circle of acquaintances. Each specification is equally valid and
entails criteria of similarity. The point is, there are objectives for
which neither the first specification (and the criteria it entails),
nor the second (and the criteria it entails) are sufficient. In con-
versation, when trying to control a man, to persuade him to do
something, how do I dcfine him? Manifestly 1 do not, at least,
I continually change my specification in such a way that he
appears /o me as a sclf-organizing system.

Hence, the phrase ‘self-organizing system’, entails a relation
between an observer and an assembly. It alsoentails the observer's
objective (an assembly may be a self-organizing system for one




48 AN APPROACH TO CYBERNETICS

observer but not another, or for one objective but not another).
Again it is possible that an assembly will appear as a self-
organizing system initially and become stationary after inter-
action (the conversation partner does, on average, what I ask
him). The dependence is also evident in measures of organization;
for example, Von Foerster proposes to use Shannon’s Redund-
ancy (Appendix 5) for this purpose. A system is ‘self-organizing’ if
the rate of change of its redundancy is positive. From Appendix 5
redundancy is a function of ¥* and Fmax (two information
measures) of which }"* depends chiefly upon constraints developed
within the specified system but Vmax depends upon the specifica-
tion and the observer’s frame of reference.
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4 Control Systems

A CONTROLLER is a natural or constructed assembly which
interacts with its environment to bring about a particular
stability called the ‘goal’ or ‘objective’. Hence the participant
observers are controllers (with ‘goals’ or ‘objectives’ v, or v,).
Indeed, whenever there is a stable system, then, in principle, we
can envisage a subsystem acting as the controller that maintains
this stability. More often, though, we come across controllers
that have been deliberately built (thermostats, process con-
trollers) and the partitioning which separates these devices from
the environment is given by their construction.

Power Supply
with fluctuations =Y

VOLTAGE @ ___,, Stabilised
CONTROLLER x v Ovtput
COM PARE
WITH Yo
T T Tu
&

T

Fig. 13a. A simple controller

The voltage controller of Figure 134 is a case in point*.
Physically it is a neat, mechanically distinct entity. The state of
its environment is represented by the value of one variable,

* This is a first order linear servo dy/dt = — b(y—y,.) with b a positive
constant. Solving for y we have y = 3,.(l-e-#) thus as 7 increases
approaches y,. We shall not discuss the mathematics of servomechan-
isms because it is a subject in its own right . Reference is made to
MacColl and, for applications to behavioural science, in particular,
sociology, to Tustin 38,

49
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namely the voltage y which is to be stabilized at a chosen value
1. In the absence of the controller the supply voltage v fluctuates
about y,. To maintain y = y, a ‘difference signal’ y—y, is applied
in negative feedback to the controller. Now, from inspection,
y = x + v where x 1s the controller output derived from a
potentiometer placed across an auxiliary power source, The
‘negative feedback’ connection means that the motor which moves
this potentiometer is driven at a rate — (3—y,;) hence that the
rate of change of x, i1s equal to — (y—y,). The controller is in
equilibrium if and only if x is unchanging and this is the case only
when y =¥, X =V — ¥,

_ o
B A

R R

Fig. 13b. Abstract image of simple controller

Such a control i1s formally represented in Figure 130 by a
subsystem A (the controller) with states X, a subset being
equilibrial, a subsystem B, (the environment) with states Y, of
which a subset £ is the objective (i.e., includes the state we want
the environment to assume) and coupling functions f and g,
whereby A and B interact (i.e. states of 4 displace states of B
and vice versa). The coupling functions and the behavioural
equation of A are so chosen that ¥ is in ¢ if and only if X is
equilibrial. The behavioural equation of A is often called the
controller’s ‘decision rule’ since it determines what corrective
displacement attends each change of state in the environment
and there is a sense in which A’s tendency to equilibrium forces ¥
into ¢. The formalism adequately describes any ‘Automatic’
controlier like the voltage regulator, (any device which has a
fixed ‘decision’ rule) and any simple homeostasis. In order to
design such a thing we must, of course, know what the rule
should be (which entails having a model to represent the environ-
ment and determine what is and what i1snot a corrective response).

Notall controllers are so simple. An ‘Adaptive’ or ‘ultrastable’®
controller 1s shown, formally in Figure 13¢. Its designer need not
have a comprehensive model of the environment — hence, in the
picture, we show a source of unpredictable disturbances per-
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Internal source of disturbances

e ]

3

Fig. 13c. Abstract image of adaptive or ultrastable controller

Unpredictable
drsiurbances B

turbing the states of B. Nor is there a unique decision rule.
Instead there 1s a set of possible rules — possible state trans-
formations. An internal source of disturbances perturbs the state
of A, (as designers, we should say that this source induces A
to make trial actions). Now whatever rule (or transformation)
18 currently selected we know, from our previous arguments,
that the behaviour of 4 on its own would be equilibrial. If this
equilibrial behaviour also forces Y into & then the system as a
whole is equilibrial and the currently selected decision rule is
left unchanged. On the other hand, if the whole (4 and B inter-
acting) does not reach equilibrium, the rule (or a ‘state’ trans-
formation) is changed and the process is repeated until equilibrium
1s achieved.

Imporitant Restrictions

(i). The controller in Figure 13a is stable and successful only
for a limited range of fluctuations. If v goes plus or minus too much,
x does also, and the potentiometer arm comes off the end of its
winding, which is an irreversible change. If v changes too fast the
motor cannot keep pace and the controller fails to correct the
fluctuation which may lead to cumulative instability.

(i1). The variety of actions must be at least as great as the
variety of the fluctuations to be corrected.

This principle, which Ashby calls ‘requisite variety’ is most
strikingly illustrated if we suppose:

[. The potentiometer replaced by a switch (this is no travesty,
for a real potentiometer is /ike a switch and x does change in
discrete units).

3
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II. That v also assumes discrete values. In this case, switch
positions (controller’s actions) select columns in the table of
Figure 134 and values of v select rows. The states of the environ-
ment, now more conveniently called outcomes, are the entries in
the table. For convenience, it is assumed that y, = 0 when the
outcomes 0 become the set {. Since the potentiometer only
moves one right, one left, or stays where it is in each interval A¢
the selective variety per 4t is Log.,3.

xmi", x -:?‘ﬂllh"l 1"“:
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Fig. 13d. Outcome matrix used to determine a decision rule.

IT the same restrictions apply to disturbances occurring no
more often than once per A¢ the environment variety is also
Log..3 and, by inspection, whatever value v assumes the con-
troller can maintain an outcome = 0 in . On the other hand,
if v changes more rapidly, say, two moves per At, this is no
longer the case, nor is it the case for magitudes greater than
v = x.__ or less than v = x,,.. ‘Requisite variety’ applies
equally for any well-defined set of actions and outcomes and
changes in the environment, (Since in the gencral case, the entries
are unrestricted the ‘table’ is isomorphic with the ‘outcome
matrix’ which, in the theory of games, specifies the cutcome
attending a pair of moves, one by each of two participants select-
ing columns j and rows i respectively. In the theory of games a
number 0, is assigned, for each participant, to each entry and the
matrix of numbers is called the pay-off matrix, for it says how
much of some desirable commodity each parficipant receives
for each possible combination of moves. The present participants
are A and B. It is feasible to assign number {,;, related in someway
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to achievement of £ to each outcome and thus determine a pay-
oftf matrix. We have, in fact, done this in our table. But whereas
the numbers in the table lead to a rather obvious decision rule,
the decision rule for the general case is far from obvious.)

H1. To extend the principle, * The amount of control(measuredas a
variety) depends upon the amount of information the controller gleans
Jrom its environment'. In stating ‘requisite variety’ we assumed
that A had complete information about B (regarded as a parti-
cipant, 4 could inspect B moves and the pay-off matrix, before
sclecting an A move). Commonly, of course, the system B is
enclosed in a ‘black box’ (A receiving imperfect evidence about
B). Hence, we distinguish two kinds of controller - the simple
‘perfectly informed’ type, and ‘imperfectly informed’ controllers
which we shall discuss in 2 moment.

IV. A voltage controller acts in a well-defined reference frame
of voltage at ¢. It cannot appreciate voltages other than at e, it
15 notoriously unable to deal with humidity changes which
exert a very adverse effect upon 1ts behaviour and it reacts rather
badly to kicks. This is not rrue of every controller. Biological
controllers, in particular, can change their reference frame (see
Chapter 7).

Automatic Controllers
Automatic controllers receive perfect information about the
system they control and have fixed decision rules, that determine
their actions. They are the stoff that automation used to be, and
sometimes still is, made from. Personally I am more impressed
by pianolas and cailiopes than any grim automaton running a
production line. Do not despize the machines even if you cannot
spare my childish wonderment. I have seen a kind of pianola
made in 1920, which includes a fourth order non-linear servo
system, and the most elaborate code transformation from the
input music roll. These beautiful machines reached a peak of
ingenuity vears ago and, for all the talk, automation, in the
classical sense, is a hoary old art. The best place to learn it is in
the music hall, beside Sutros, on the cliff at San Francisco. The
second best place is Disneyland — I admit a preference for
northern California. In England we have Battersea Park.
Typically, an industrial controller senses a certain combination
of events, for example, that all of r different welding procedures
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have been completed, upon the n-th piece of metalwork at booth
i, via a logical network. As a result of this information, the auto-
matic controller takes an action determined by its decision rule,
i.e. moves the n-th job to booth i + 1. It then awaits the r + Ith
event, a feedback signal te say the metalwork has arrived, after
which it is free to accept the n + Ith job at booth i, and the
whole cycle is repeated. The automatic controller is inert. 1If the
metalwork runs out it does nothing, or at best rings a bell to
say it is idle. It cannot prod its environment, looking for
work, and, unfortunately, the same is true of my favourite

calliopes.

The Distinction between Perfectly and Imperfectly Informed
Controllers

In the simplest case a perfectly informed, automatic controller
reduces to Figure 14. (i) in which the switch A is turned by the
controller to actions o, f, whilst switch B is turned by the
behaviour of the environment to stages a, b, at each instant Ar.
For the moment we can neglect the small devil G, who alters
the structure of the environment, because he is qguiescent.
According to the circuit, the lamp is illuminated if and only if
A = awhen B = a,and A = [ when B = b, and this is indicated
in the pay-off matrix. We shall call the lamp a knowledge of
results signal, since it tells the controller the result of its action
after it has selected an action*. In addition the controller
receives complete information about the state of the environment
(B switch position) through channel F. Hence, assuming it can
select one action each At, and given the decision rule 4 = q, if
B=a, A= f, if B=b, it can keep the lamp illuminated by
matching its actions (4 swiich positions) to the state of the
environment. Notice the ‘decision rule’ entails ‘a model’ of the
environment which, in this case, is built into the controller.

* Strictly a servomechanism, like the voltage regulator, receives
only knowledge of results since it must make some trial displacement
in order to elicit a difference signal. Indeed, in the region of ¥y =
the servomechanism does make ‘hunting’ actions. These can
obliterated by suitable design which relies on the fact that x is a
‘continuous’ variable. Given continuity the distinction between know-
lege of results and direct information is tenuous. But it becomes
important when, as at x = xy,. there are discontinuities and in the

present discussion discontinuity is the rule.
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Fig. 14 (i). Dotted lines enclose A, an ‘on, off’ controller and B, its
‘on, off’ environment with characteristics determined by G. F is a
channel coupling 2 fo 4.

Fig. 14 (11). Hypothetical sequences of signals and evidence.

Fig. 14 (in). A trial making controller.

Fig. 14 (iv). Autonomous trial making controller.

An imperfectly informed controller interacts with an environ-
ment enclosed in a black box (as in Chapter 2).

(). In the place of complete information along F, the imper-
fectly informed controller may only receive a signal p (¢) as in
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Figure 14 (ii), which provides evidence ¢ (a, 1), ¢ (b, 1), about
the states of the environment, according to the convention that
the more positive the average value of p (f) in the interval At
preceeding this instant, the more likely is B = a (and the higher
& (a, 1)) the more negative p(r) the more likely is B = b (and the
higher ¢ (b, 1)). With two mutually exclusive and exhaustive
states, one or the other must be thecaseso ¢ (a, 1) + b 1) = 1.
Obviously if é (a, 1) = ¢ (b, 1) = 0-5, no information is conveyed.

(ii). The knowledge of results data may be disconnected or
mutilated.

Given either impairment i or ii, completely accurate matching
is impossible and we must consider statistical rather than deter-
minate matching between 4 and B. Statistical matching can
maximize the pay-off on average, i.e. illuminate the lamp as often
as possible.

To illustrate the idea consider the biased dice thrower in
Figure 14 (iii). It can throw a ‘two-sided’ dice each At, the out-
come determining either 4 = o, or A = f. If the bias is uniform
the dice thrower will produce a sequence in which as and fis are
equiprobable. Now this sequence is matched to an environment
wherein p (a) = p (b) = 0'5 (using the letter p as in Chapter 3,
for the actual value of an a priori probability, which depends upon
some physical constraint in the environment). Obviously p (@) +
p () = 1. Suppose we happened to know that p (@) = 0-8 and
p (5) = 0-2 (which is a rudimentary statistical model of the
environment). The activity of the dice thrower can be matched
by adjusting the bias so that the probability of @ = p (@) = 0-8
and of f = p(b) = 0-2. In other words, by building in our
‘statistical model’. There are two significant consequences.

(i). If the dice thrower forms part of a controller a matched
statistical bias will, by itself, yield an average pay-off better
than the pay-off from unbiased chance activity. (The best
behaviour if there are no sequential dependencies, is to choose

a always.) Gl
(ii). The bias can set up a state of ‘anticipation’ in the con-

troller which combined with otherwise inadequate evidence
¢ (a, 1), ¢ (b, 1) leads to the best action on a particular occasion t.

We shall examine a breed of controllers (conditional proba-
bility machines and Markovian predictors) that build up a statis-
tical model on their own account, on the assumption that the
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behaviour of their environment is Markovian. They are of
increasing practical importance.

Whilst, in some applications, the control system may be a
procedure (like quality control of a product) carried out in an
office, in others it is a physical device. For the present purpose it
1s more convenient to think of physical machinery — and (keeping
the other connotation in mind) we shall develop the controller
from our biased dice thrower. There are two kinds of Markovian
controller, namely, ‘Predictive’ and ‘Imitative’ or, equally well,
‘tnert’ and ‘active’.

Predictive Controllers
The signal p () may indicate, for example, the expected position
of a ship with reference to a harbour, or the expected number of
defective items in a batch®. The controller must issue an instruc-
tion & or f§ (helm up or down, reject or accept), whenever, but no
more often than each Ay, it is called for by some external request
signal. The predictive controller is thus a recipient that derives
evidence from p (¢) to form an eprimum estimate of the state of
its environment. In a more elaborate version it learns to recognize
a given state of affairs. Only affer this has been done, the decision
rule is invoked to determine & or 5. If an instruction is called for
each Ar, the best estimate is W (a, 1) = p(a): @la, 1) C (1) and
Y(b,t)=p(b) D (b, 1) C(5),where C (¢) isa constant derived [rom
the condition that ¥ (a, 1) &~ ¥ (b, 1) = 1. In ignorance of the
environment (ship position, number of defective items) this is
usually not much help, but given several, say m intervals At, in
which to issue an instruction a controller with a2 ‘memory’
register can accumulate evidence. Starting at 1 = 0, and (assum-
ing complete ignorance) with p (@) — p (b):

¥ (a,0) = p (a) [we need not write ¥ (b, 0) since ¥ (b, 1) =

1-¥Y@t1i¥P@l)=plaP@)yC(l) ....¥(a m =

play@(a. D@, 2)... D (a m-C{m)
and, as m is increased, either ¥ (a. m) or ¥ (b, m) will approach
1 and the other will approach 0. The stationary values ¥ (i, m)
are no more nor less than time averages 7 (i, 1) of Chapter 3.

Referring to our decision rule, A= if B=a, A=f if

* A signal resolved into evidence in favour of one of two possible
positions or batch numbers is, of course, absurd. Commonly we are
concerned with distribution functions. But the simple case is illustrative.
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B = b, action (or instruction) & should be biased favourably to
an extent ¥ (a, m) and action (or instruction) 8 to an extent
Y (p, m). Thus, at ¢ = m, these values are applied as a bias to
the dice thrower, Figure 2 (ii), which, on receiving a request signal,
determines either « or ff. For the next set of intervals, beginning
att = m + 1, the a priori probabilities p (a), p (b) are replaced by
the best estimates, ¥ (a, m), ¥ (b, m) and the predictive controller
embarks upon a further cycle. There is just one complication,
which is concealed by the oversimplified picture. Normally there
are many possible actions, entries and outcomes, and the pay-off
matrix contains numerical entries, not just ‘on’ and ‘off’. In
particular, some of the outcomes (ship on the rocks, best batch
rejected) will be very undesirable, and associated with large
negative numbers. Hence the controller takes these values 6,
i = aor b, j = a or f§ into account as a further bias upon the dice~
throwing process. It ‘decides’ according to the conseguences of be-
ing wrong or right as well as the evidence that it is wrong or right.

The Conditional Probability Machines . _
Much of the pioneer work upon conditional probability machines

is due to Uttley*®, who used them to model certain aspects of
nervous activity. He considers an idealized sensory input — binary
variables 4, B. ... indicating the presence or absence of distinct
attributes. States of the environment are represented in a cate-
gorizing hierarchy — the lowest level signifying mere occurrence
of the sensed properties 4, B, . . . , the next level signifying the
joint occurrence of the properties (event categories such as 4B8),
and so on for higher levels. The hierarchy is realized by electrical
units, corresponding with these categories and responding when
the events occur, (thus, the 4 unit responds when A is present
and the 4B unit when A and B occur jointly). In a conditional
probability machine there are registers which compute for each
event the average number of occasions upon which it has occurred,
thus, over an interval, and assuming a stationary environment
the A register will compute 57 , and the ABregister n ,  and these
values will approximate the statistical constraints p , and p ;).
The machine is given a rule of inference which entails conditional

probability. Let & be a constant which, in practice, is about }.

The machine computes ratios in the form 1‘”’ such that the index
A
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of the numerator term is an event category which logically
includes the index of the denominator term. If, at a given instant,

A occurs and if the ratio 4%

=¢ then the machine infers the
A
occurrence also of B.

If the machine were perfectly informed (and if the environ-
ment were stationary and it functioned successfully) then (after
an interval needed to accumulate averages) the inference B implies
that the B unit is stimulated. But it is more plausible to suppose
that the machine is imperfectly informed - that the stimuli which
actuate the first level units are ‘evidence’ @ (A), @ (B), . . . which
is sometimes absent even when 4 and B are present. In this case
inference will supplement the inadequate “evidence’. After learn-
ing, the machine infers B, given 4, even though - on some
particular occasion — the evidence for 8 is absent.

The machines are much more elaborate and comprehensive
than I have snggested, and Uttley’s original papers?!? 4! should be
consulted, I shall conclude this woefully inadequate account with
a point he makes in one of these, namely, that if the relation of
‘inclusion’ 1s replaced by ‘temporal precedence’, i.e. if there are
delay elements that categorize events A before B, A temporally
coincident with B’ and ' 4 after B’, then the machine is a predictor
and its ‘inferences’ are predictions which may lead, through a
decision rule, to actions.

Imitative Controllers

Imitative controllers come into their own when no signal p (1) is
available although the knowledge of results data is intact (the term
‘imitative’ is due to MacKay*?, who examines the system in detail).
Since the controller has no direct evidence of the state of its
environment, it cannot ‘learn to recognize’ like the predictive
devices. Instead the machine *prods’ its environment by an auto-
nomous trial making behaviour. Then it learns which forms of
behaviour lead to the best results. In the case we are considering
the machine learns to imitate.

Referring to Figure 14 (iv) the dice thrower, in an imitative
controller, acts continually and autonomously, 1.e., frial actions
«, B, are made regardless of any external excitation. Initially the
actions o and ff may be tried equiprobably (this is a good strategy
— if we do not know what should be done). Some trial activities
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will make the lamp light. Now, given a ‘memory’ and given that
the environment is a Markovian system, a controller can derive
time average estimates 7, as in Chapter 3, or conditional proba-
bilities, like n.,—'The estimated probability, given « at f that
the lamp will light, given & at ¢ + 1°, ory .= ‘The estimated
probability, given o at ¢, that the lamp will light, given f§ at¢ + 1.
These estimates converge over a long enough sampling interval
(see Chapter 3) to stationary values lying arbitrarily near pus, Pag,
Pgas Pssand forma transition probability matrix P. Whilst sampling
is in progress, it is hard to say what the controller will do, but
assuming that 7, =~ p,; have been built up in its memory the
action isalready familiar. Let J(¢) = 1,0,if A = xatz, and J (1) =0,
1,ifA=f at 7, (the nomenclature is from Chapter 3). J (rf) operates
upon P to form a probability distribution p(f + 1)=p.(t +1),ps
(t -+ 1), which, since J () is binary, is one or other row of P. As
indicated in Figure 14 (iv) p, {(t+ 1) and pp (t -+ 1) are used to
bias the dice thrower at r + 1, as a result of which either o or
f is selected and J (¢ + 1) determined. Hence, P is a statistical
model and the equilibrial behaviour given is a statistical
decision rtule*. If o followed by o« tends to light the lamp,
then o will tend to follow «, if o followed by f does the
trick, then f will tend to follow a. We shall later discuss systems
able to ‘learn’ much longer matching sequences, with no more
elaborate knowledge of results, for in principle, an arbitrary
degree of matching can be achieved, given long enough to time
average. Hence, no p (1), no evidence @ (a, 1), @ (b, 1) is necessary
although if it is available it can be used as a bias imposed upon
the ‘state of anticipation’ of the dice thrower and less ‘learning’
will be needed to achieve a given accuracy of matching.

In principle, an imitative controller can deal with a non-station-
ary environment if there are ‘metastable’ stationary states. Sup-
pose a transition probability matrix P; has been ‘learned’, then
the devil G, in Figure 14 (ii) turns his switch. The controller can
perfectly well ‘unlearn’ P, and ‘learn’ the matrix P, needed to deal
with this different environment, providing the switch is not turned

* This seems to, but in reality does not, disobey the rule that amount
of control depends upon the information available to the controller.
First, the whole process depends upon the information that the environ-
ment is stationary. Secondly, time is taken for learning and the informa-
tion obtained over this time, adds up to the necessary amount.
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too often. Further, given a large memory capacity the controller
need not unlearn all about P,, so if the environment returns to its
previous condition P, is relearned more rapidly.,

As described, only two values of knowledge of results signal are
distinguished, but it is not difficult to conceive a multi valued
knowledge of results signal (something like *that was good, that
was better””) and ils magnitude can perfectly well determine how
much ‘learning’ occurs, For obvious reasons this is often called
a ‘reward’ or '‘reinforcement’ variable. But the controller is not
“sure about” the consequences of a trial action, before the
action 1s selected. The system does not include a recorded pay-off
matrix. This, like the ‘model’ and the decision rule must be
‘learned’.

The Adaptive Control System
We have already introduced the idea of control systems which
adapt the decision rule in order to achieve stability in a given
environment. If any kind of stability will do, the system is called
‘ultrastable’, which is Ashby’s term; if a more specific objective
1s needed; an adaptive controller. There are two applications,
In one the environment is unknown but stationary, when the
adapftive controller is used to perform experiments which could
have been done by its designer, to build a model and to determine
an optimum decision rule. In the other, the environment is non-
stationary and the controller must continually relearn about it
Hence, the imitative controller, learning P,, P.. . . . . i5s adaptive.
As In Chapter 3 we can always view ‘learning’ as a selective
operation and, to start with, this 1s more illuminating for the
logic of an adaptive controller entails an hierarchy because of
which selective operations can be ‘amplified’. To illustrate the
point, imagine a busy executive (who acts as an overall controller
in the hierarchy) disturbed by m: callers. Each hour, to achieve
stability and get on with his work, he engages a receptionist (who
acts as a sub controller), selected from a set of M possibilities,
variety Log..,-M, perhaps, after several trials. The receptionist
who keeps the job is able to perform the selective operation of
prevaricating with callers so that, for example, the one who is
welcome each hour is accepted, and the m-1 are rejected. Her
selective operation has a variety Log.,”® per hour. Maybe she
Jasts 100 hours. The executive has thus gained 100.Log,™ units
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~ of selective activity for a mere Log.,-M units, and commonly
‘m> M. The trick is, he made his selection from the right kind of

- things — receptionists - which happened to be available. The
executive (overall controller) need not know how the receptionists
(sub controllers at a lower level in the hierarchy) interact with the
_environment of callers —- he only needs to evaluate the result. In
a very real sense, which gives substance to the idea of a ‘level’,

~ theinteraction of sub controllers takes place in an object language

(talking about callers), whilst the overall controller has a meta-
language (talking about receptionists). There can, of course, be
any number of levels. |

If we describe the control system as something which ‘learns’,
there are several equivalent pictures. In the first, the M recep-
tionists are replaced by a single one, who does all of the learning
guided by a reward variable £ — approval or disapproval meted
out by the executive who merely comments upon her behavioural
adaptations. In the next picture, the executive does all the learn-
ing. He issues instructions (from Chapter 3 we can think of these

MASTER MASTER
CONTROLLER, CONTROLLER

P
Master Controller changes

L

_—_

ENYIRONMENT

(8]
o
L 0 EYALUATOR. —4 8 EVAITIATOR

Fig. 15 (i). Equivalent views of an adaptive controller.
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changing transition probabilities that govern her behaviour) and
learns what instructions induce a fruitful attitude. This, in an
- Industrial system is the method of changing parameters in a sub-
 controller. Finally, learning may be distributed throughout the
~ system. The hierarchy still has a real logical status, but no
physical location See Figure 15 (i)." |

':E::. N

Fig. 15 (1i). Automated factory (see below for key)

Adaptive Controllers in Industry

The recently automated candy factory in Figure 15 (i) illustrates
an industrial application of adaptive control. An indication of
successful activity —a reward variable &, is derived from one of
two sources {(only one at once) namely — (Mode 1) An output
meter (1) which measures quality and quantity of candy (accord-
ing to a predetermined criterion), or (Mode II) a manager (2) who
develops a preference for certain states of the plant upon a
{El.ivcrsity of evidence, sampling the candy, watching his material
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bills, and altercating with customers who object to the sweetmeat.

In either case, values of 6 are conveyed to a clerk (3). The engin-
eer (4) (having the status of overall controller) knows that the
factory can be run by some possibly changing controller, because
a limited number of taps used to be turned and a limited number
of measures used to be made by men (5) before the place was
automated. But the men (5) are disgruntled and will not disclose

their arts. So (4) has to experiment by changing the parameters

of a versatile sub-controller (which is equivalent to selecting
different sub-controllers from a box) (6). For each setting of the
parameters (7), the clerk records a value of @ in a table (8) and
these records are averaged and guide the engincer who wishes to
maximize the average value of 6. Finally (9) and (10) represent
the imperfections which disturb any real control system. Actually
(8) can take two different forms. If the & values are recorded con-
ditional upon an independently recognized state of the plant
and a particular setting of the parameters, it is a payoff matrix.
If the @ values are simply entered under headings ‘parameter
value’ it is a distribution of @ in the phase space of the sub
controller. For brevity we shall examine only the second of these
alternatives. Hence we are dealing with contours of & such as
those in Figure 16 which could be arrived at by diligent experi-
menting. |

We can, of course, replace the clerk by a ‘memory’ register
and the engineer in Figure 15 (ii) by a computing machine. The
problem of control is then a matter of ‘How does the machine
maximize 7' and, ‘how much experimenting and learning does
it have to do?’.

In practice, the controller cannot make each possible trial
adjustment of the parameter values and the number needed to
sense the # layout is greatly reduced if there is continuity in the
phase space. If so, values of & lying between a pair of known

- values can be confidently interpolated. The point is argued by
- Andrew®, Box*, Gabor*®, George®®, and others. It expresses a

more widely applicable fact examined in detail by Ashby, that

- if there is regularity - as a special case, continuity — in the environ-

ment the control system will be partitionable into subsystems
and ‘amplification’ of the selective activity is possible. If we
confine our attention to Mode (I) some sort of continuity exists —

 further, choice of a sufficient number of parameters in the initial
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(See pages 105-108)
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design will nearly always reduce a many humped distribution
like Figure 16 (i) to a single hump like Figure 16 (ii).

Given the single peak it is not hard to see how the overall
controller should maximize 6. It must make trial adjustments
and choose whichever of these gives the greatest positive incre-
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Fig. 16 (1). Multiple maxima in ¢ contour on phase space with control
parameters as co-ordinates.

Fig. 16 (ii). Single maximum in # contours on phase space with control
parameters as co-ordinates

trial becomes either 0 or negative. Overall controllers of this

taneously activated
In periods 7-9 the activity
spreads rapidly outwards.

kind are often called ‘Hill climbers’ or optimizers. Because the
controller is informed that there is only one peak it needs only
enough ‘memory capacity’ to retain the results of its immediate

Tom period 8 onwards the
ceils activated earlier begin to
recover their sensitivitics.
The activity continues to
travel outwards, and, at the
same time, the cells which
were orginally active during
the first cycle become sensi-
tive again. The process con-
Hioites oo showsrinperiod 16,
The last picture conveys some
idea of the elaborate forms
of activity which are soon
induced. i o
Reprodicced by r:‘.t.-“, ‘r.,,-'_'. of
AL Beurie and tie Jewnal of
fezo Nistiinte of & :"":.-f',-":'f.-'f

Liyiness

trials (a bit more for efliciency or if the environment 15 non-
stationary when it has to learn the location of the different
single peaks associated with each metastable state). But if (on
grounds of economy) several peaks are tolerated, the ‘Hill
climber’ must have a built-in dislike of apparent success. Thus,
using the strategy just described an overall controller might
reach X, which is not an ﬂptimum peak and it needs to move
through a valley into ¥, which is. This is more difficult, but if the
controller 5 desienyd o maks occasional ‘trial excursions, even
when it has reached & maximui: — a statistical solution is available.
The controller will need a larcer ‘memory capacity’ than its
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simple precursor, in order to retain the hill and valley layout
and find its way around. :

A number of ‘hill climbers’ are in use, particularly in the chemi-
cal industry. Some like the Westinghouse Optron, and Selfridge’s
experimental optimizers at Lincoln Laboratories (U.S.A.) are
specially built machines, others are computer programmes used
to monitor a process. In England, Alex Andrew has rationalized
the field of optimum search strategies and his papers* should
be consulted. In the Russian work Alexei Ivahnenko* has
developed a beautiful technique for analysing the behaviour of

optimizers within the framework of conventional servomechanism
theory.

Adaptive Controllers Able to Deal with a Less Tidy Environ-
ment

What about Mode I1? In the enlarged system, including custom-
mers and suppliers, there is no well defined reference frame, no
limited field of enquiry. So Mode 1I is a trick. I have put the
manager there as something unspecified that makes a very large
environment intelligible to a computer (or a rational procedure)
in terms of a preference ordering @. I do not think we are yet in
a position to replace the manager, though we are well on the way,
and we shall discuss some possibilities later. For the moment,
notice that an imitative controller is able to go part of the way
for, in a certain sense, it can form metalinguistic concepts (for
a detailed discussion, see MacKay's paper). Suppose an hierarchy
of controllers learning about and trying to march each other’s
behaviour. The lowest level controller imitates its environment,
learning that « is more likely than f. The second level learns
sequences, o then f3, or ff then a. The next level learns about and
imitates sequences as a whole, not  or f as such, and further
levels learn about categories of sequences. In other words,
‘sequences’ and ‘categories of sequence’ become represented by
symbols at different levels of discourse and the artifact performs
a non-trivial abstraction.

As indicated in Figure 17 (i) any level of the system will learn

* We were fortunate in hearing Professor Ivahnenko’s English
language lectures, delivered as a guest of the Royal Society. The
theme of his work is available in Russian but not, as yet, in English
transiation */.
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those regularities which enable it, as a whole, to keep in equili-
brium with its environment, and receive a reward. Now we need
not design the machine to apprehend any particular kind of
sequence. For when (speaking mechanically) we say ‘it learns’ we
mean that the elementary subsystems within one of the imitative
units have become more closely coupled. True, given some idea
of what should happen, it is better to build the artifact on a plan,
for example, an hierarchy, but we can build it as a bag full of
elementary subsystems. In this case, a structure such as an
‘hierarchy’ occurs as a result of the learning process.

From Units higher (n the Kiersrchy

] . &
- -
A,
¥ E : +
Evidence about the efect of Activity
A o in Environment
i
i A 1
Cutputs of A, bias probabilicles of 4,3, In A,
L B ke
Epviranment o

Fig. 17 (1). An heirarchy of trial making controllers.

A Real-Life Artifact
Although developed independently, an automaton of my own
called Eucrates, embodies a number of these ideas. Plate 1. It
is a collection of two kinds of element, namely, 'motor’ elements
and ‘memory’ elements, which can be connected in various ways.
The name Eucrates relates to a series of special-purpose compu-
ters, the first of which was demonstrated in 1955. The illustration
shows an apparatus designed by C. E. G. Bailey, T. R. McKinnon
Wood and myself and, whilst chiefly intended to simulate the
behaviour of a trainee it is applicable also to industrial control.
A motor element in Eucrates is functionally analogous to one
of the ‘artificial neurones’ used by other workers in this field
(that is, an electrical circuit or other artifact, which imitates
certain carefully specified features of a real neurone but, except
in this restricted sense, is not intended as a ‘neurone model’).
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68 AN APPROACH TO CYBERNETICS

If the input to a motor element exceeds a ‘threshold® the element
emits an impulse of fixed amplitude and duration, After this the
‘threshold’ is automatically elevated and no further impulse can
be emitted — "absolute refractory period’ is the analogous neuro-
logical term. Whilst the threshold returns to its normal value the
motor clement is more than ordinarily difficult to stimulate
relative refractory period), and lacking stimulation, the threshold
decreases exponentially to a level at which chance fluctuations will

Readouts to Environment

This i 2 simplified plcture. The chicf
emision & an Indicstion of 2 by (impule
“length) and a dehiy (in “srtificial newrone’
terms — 3 “relrattory period’) such thar, if an
element is energired, it cannot be ime
mediately re-energised.
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Fig. 17 (ii). An imitative unit, made up of single action autonomous
elements (equivalently ‘artificial neurones’), performs trials upon its
environment and also interrogales an internal ‘memory’. {Each
‘memory’ register is represented by a small circle at a line intersection).
Interrogation elicits the guantities ¢ stored by a row of these registers,
for example, if g makes a trial (emitsan impulse)28x, 988, 78y, °ps,
pass by dotted lines to bias further activity. Stored quantities  com-
monly depend upon a reward ¢ (that depends, in turn, upon effect of
previous trials).

excite the element (autonomous activity). Groups of elements
may have their thresholds linked together by mutual inhibitory
connection so that only one can emit an impulse at once. Another
interpretation is that each element in the group is competing for
a restricted supply of the energy needed to emit an impulse and
only one can succeed at once. In either case such a group of motor
elements is a basic ‘imitative unit’, '
‘Memory’ elements associate the ouput impulses of motor

¢lements with the inputs of others, or connect motor elements

to the ‘environment’. The ‘memory’ elements attached to 2 motor
ek:mf:nt are analogous to the synaptic connections of a neurone.
In Figure 17 {ii) four motor elements are freely interconnectable

Suppose, at ¢, element £ emits an impuise, row B of the array is

selected. o f5, 3, 9, receive inputs og, (1), oga (1), ap, (1), ags (1), from
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this row of memory elements. Since offy0 are grouped, they act
as an imitative unit biased by this row. The contribution made
by o, for example, given the trial action (output impulse) f at ¢,
IS opa (£), hence og, () determines the interconnection of these two
motor elements. If o5, = 0, fexerts no effect upon 2. If the o, of
the memory elements are fixed we can regard the array as a
transition probability matrix P and proceed as before. In general,
however, the o values change leading to a sequence Py, P, . . .
Thus, in one programme we start off with each o, at a small
positive value and each o, is decreased by a small amount each
instant Ar. (This is an inbuilt tendency for connections to decay.)
Now suppose « at 1, and f§ at -+ 1. The one memory element,

Detailed @ connections are not s.ﬁnwf <)
but go te elements
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Fig. 17 (ii1). Heirarchical arrangement of imitative units and ‘memory’
registers
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lying at the intersection of row aand column f, has its contents
increased by an increment proportional to@ (r + 1) —p.a(t + 1)
where & (1 + 1) isthevalueat ¢ -+ 1 of anexternal reward variable.

Now it is obvious that various modes of activity and various
forms of interaction will build up in the network. The suggested
programme implies that those modes of activity which are associ-
ated with high values of 8 () will persist and develop for connec-
tions o, survive if and only if they are built up faster than the
tendency to decay. If, as in Figure 17 (iii). @ (¢) is a function of an
environment coupled to some of the motor elements (the sensory
connections are optional) the simulator learns by ftrial and
reward. Notice that only some of the elements are coupled. If all
except the unshaded memory elements were omitted it would be
true to say that segment I related environment to environment,
segment Il internal activity at the first level of an hierarchy to
itself, V environment to internal activity, VI internal activity to
environment. Segment I1I defines a higher level in the hierarchy —
a part of the network learning about activity in II, and segment
IV another level (learning about III) whilst VII, VIII, IX, X
couple the different levels. But this structure need not be built
into the simulator. It can arise, as an optimum adaptation to the
environment by natural selection. Of all the connections which
may occur only those which mediate a favourable behaviour can
Survive.
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Biological Controllers

At the level of systems, there is no difference between biological
and mechanical control. Butsometimes the biological controller, as
well as the control system, has a ready mechanical analogue.
When a limb is moved from position Y; to another, ¥, the
muscular contraction depends upon the frequency of nerve
impulses arriving at the muscular end plates. Stretch receptors
in the muscle signal the degree of contraction along ‘proprio-
ceptive’ fibres and this feedback to various parts of the brain which
are concerned specifically inhibits motor activity and stabilizes
the motion. The whole process is monitored by a further, often
visual, feedback which conveys a difference signal Y,-Y; which
is 0 when the act is completed. So limb movement does involve a
two-loop positional servomechanism. Nerve trunks are com-
munication channels carrying impulse frequency modulated
signals. If they are cut the servomechanism misbehaves in a
predictable fashion. True, fibres in a nerve trunk may regenerate,
or alternative pathways may be utilized. But, for practical pur-
poses, the process of repair and adaptation is separate from the
evervday functioning. Now this deecree of correspondence is
exceptional. It does not alter the identity between control systems
to point out that most biological controllers are quite unmechani-
cal. Often it is impossible to say. ‘that is the controller’, or, ‘that is
the input’. But in biology we must be more than ordinarily
careful to think of systems, not things. _

ILet us briefly review some characteristics of biological
control.

1. Survival. Consider a biological unit, the single cell. It is an
engine such that a system called the ‘organism’, in this case 'the
cell’, shall survive in a physical assembly that determines the
environment of this system. Unlike mechanical engines neither
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energy nor matter are conserved. A degradative tendency, acting
to make the system and its environment uniform, is countered
by the continual synthesis of constituents according to a largely
inherited pattern-embedded in the state of some elaborate, protein
bound, nucleic acid molecules, called genes. These control the
synthesis of enzymes, protein molecules that act as biological
catalysts, which are distributed about the cell and which interact
together to control the synthesis of further enzymes and struc-
tural materials. Even in this crude picture, two physical distinc-
tions are entailed if the system is partitioned into subsystems: first,
spatial distribution, for the nucleic acids are chiefly in the
nucleus of the cell, the enzymes are disposed on various reaction
surfaces; then chemical specificity, in the sense that enzymes cata-
Iyze only certain reactions and combine to form orderly reaction
cycles (tricarboxylic acid system, or the A.T.P., A.D.P., phos-
phorylation, system). Conveniently both spatial distribution and
functional specificity are regarded as the consequence of a single
process called ‘Differentiation’. Hence any coupling between
differentiated subsystems tends to involve several physical
modalities,

Now, a cell without its nucleus continues to metabolize, but
soon falls apart. Equally, the genes cannot replicate without a
cell (further, there is evidence that enzyme synthesis is governed
by interaction between the genes and the state of the cell, rather
than governed by the genes alone). So it occurs that when we
speak of an organism, rather than the chemicals it is made from,
we do not mean something described by a control system. An
organism is a control system with its own survival as its objective.
The basic homeostasis is to preserve itself as an individual.

But in the real world co-operation aids survival, and the
pattern we have sketched for a single cell is repeated. There are
multicellular organisms, where cells communicate in many ways,
where groups of cells differentiate into specialized tissues, and
the immediate environment of any one is the community made up
of its neighbours, and organisms, in turn, form communities in
the social sense.

2. Adaptation. To survive in changeful surroundings an
organism must be an adaptive control system -or, in this
context, an ‘ultrastable’ system. The most flexible adaptation is
learning. The least flexible occurs in evolution, as in the develop-
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ment of multicellular creatures. In between, animals are designed
to alternate behavioural stereotypes according to the state of their
environment. Thus, a hedgehog hibernates in winter.

3. The overall homeostatis, preserving the organism, can be
expressed as the conjoint action of many homeostatic systems,
each preserving a structure or condition needed for the function-
ing of the others. Thus, therc are systems that regulate body
temperature and hydration, and if we enumerate the rest we shall
describe the organization of the body. But some care is needed
for there is no unique partitioning and few physical structures
have an unambiguous function (the limb movement servo is
exceptional). The mechanism of breathing, for example, main-
tains several homeostatic equilibria, depending upon how you
look at it (this mechanism will be examined in detail). qum
versely, many mechanisms co-operate to maintain one ﬂl:[!.iilf-
brium. The blood sugar level is the classical case, though 1t Is
true of almost any equilibrium state. The enormous stability of
an organism is largely due to these complex many-to-many
relations between structure and function. McCulloch calls the
property a ‘redundancy of mechanism’ or'® referring to brains,
where these comments apply equally to data processing ‘redund-
ancy of computation’. We can, of course, describe any cnntrql
system as a decision maker, but it occurs that in a system of this
kind we cannot say where a decision is made, At one moment A
will be dominant, at the next moment B (where 4 and B are
any two subsystems). This further property is called ‘redundancy
of potential command’.*® Because of it we must be carefl ul about
hierarchies.

There are plenty of them, as in any adaptive control system.
The mammalian brain is a somewhat stratified affair, with the
cortex commonly dominating the behaviour of substructures
which used to be dominant at an earlier stage in our evolution.
But, given mescalin, or hashish, or simple pleasure or pain . the
order of things is reversed. People exhibit a ‘thalamic’ behaviour
(meaning, quite simply, that in these conditions a particular s'ubf-
system, the thalamus, assumes dominance). Again, where is it
decided that the heart shall beat ? Amongst other possibilities the
heart is controlled by the autonomic nervous system and by a
pacemaker’ in its auricle. Both are sensitive to various chemical
and mechanical quantities. These, and the state of the heart,




74 AN APPROACH TO CYBERNETICS

determine which control system is dominant. You cannot, in fact,
avoid the problem by saying that autonomic control is mostly
concerned with rate, rather than the actual beat, even though
this is true. The hierarchies of a biological contrel system are
not like those organization charts that purport to delegate
function and responsibility to personnel.

4, We have defined an organism as a control system and posed
the possibility of partitioning it into subsystems. The extent of
the physical mechanism associated with each might be determined
by delineating the communication pathways that mediate the
control. Thisis not soeasy as it sounds, for ina multicellular animal
there are far more modalities of communication than there are
in a unicellular and we noted several in that case. What are
these modalities? One of the crudest is chemical concentration.
If one cell eats up a metabolite in short supply, then the low local
concentration is a “signal’ to a neighbouring cell. Or a cell may
excrete a specific material which acts on some but not all adjacent
cells. Or the material may stimulate a neighbouring cell to pro-
duce the same stuff, this in turn stimulates another, and so on
down a chain: this is the commonest modality in plants and
amongst the colonial amoebae, and the transmission of a nerve
impulse in an animal is a refined form of it. At a more specific
and familiar level there are hormones (oestrogens, thyroxin)
which act upon particular tissues and often conditional upon a
particular state of the tissue. There are hormones that elicit
other hormones (the pituitary hormones eliciting the oestrogens).
Then we come to orthodox channels, nerves conveying signal
impulses down definite paths to release a mediating substance
(adrenalin, acetyl choline in the mammal) at an effector or a
synapse where the joint activity of several incoming fibres may
stimulate another neurone.

Nervous transmission is informationally efficient because
signals are ‘on’, ‘off’ and because they are conveyed rapidly and
to specific destinations, But, on all grounds, nervous systems
vary a great deal. In man, the central nervous system and the
voluntary musculature is associated with nerves that release
acetyl choline. An enzyme, choline esterase, breaks this down
very rapidly, hence its effects are local and because of this, the
close knit, patterned network found in the brain is effective.
By way of contrast sympathetic nerves — one component of the
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autonomic system, concerned with involuntary actions - release
adrenalin which acts diffusely like a hormone though it is
eventually broken down by amine oxidase. In terms of connec-
tion the optic nerve libres arc mapped in detail; at the other
extreme, the network in the gut resembles the primitive arrange-
ment of a tiny pond water animal, the hydra. |

Finally, the senses and motor actions arc communication
channels and we cannot be dogmatic about where they end. The
visual difference signal ¥Y,-Y, is ecasy to demark. But if the
environment is another man (in conversation), or an adaptive
machine (which we shall discuss later on), where does one
conirol system end and the other begin ? That depends upon how
and why vou are looking at it,

Only one biological control system will be examined in
detail, but David K. Stanley Jones®® has recently discussed a
large number of these and a mathematical approach is provided
by reference ..

The Regulation of Breathing
Metabolism in the tissues uses up oxygen which is obtained from
the arterial blood and it gives rise to carbon dioxide which is
carried away in the venous blood. Ultimately oxygen is taken
up from the atmosphere, via the lungs where it oxygenates the
blood and carbon dioxide is excreted, via the lungs into the
atmosphere. An increasing rate and depth of breathing tends to
rid the body of carbon dioxide and make further supplies of
oxygen available. So, at one level breathing is a homeostatic
system which gives a man sufficient oxygen for his metabolic
demands and gets rid of sufficient carbon dioxide to prevent
intoxication. The first level of regulation keeps the mixture of
gases in the alveoli of the lungs at approximately 17 per cent
oxygen, 6 per cent carbon dioxide, even though the oxygen
demand changes from its resting value of about 250 m.l. per
minute to 2 maximum of 2,500 m.l. per minute and the carbon
dioxide excretion from 200 m.l. per minute up to 2,000 m.L
per minute. The regulation is bound up in a whole chain
of systems concerned with transporting oxygen and carbon
dioxide.

When oxygen passes through the alveoli and into the blood
stream most of it is carried in chemical combination with haemo-



16 AN APPROACH TO CYBERNETICS

globin, a substance which exists only inside the red blood
corpuscles. Haemoglobin has two chemical forms, namely
oxygenated haemoglobin (HB) OX, and reduced haemagl:::bh;
(HB) RE. These forms exist in equilibrium.

Oxygen + (HB) RE= Acid + (HB)OX ........ (1)

C@rbun dioxide is also carried in chemical combination, chiefly
as bicarbonate ions which exist mostly outside the red corpuscles
In the plasma and which, in combination with acid, react to
yield carbon dioxide and water.

_ Bicarbonate ion + Acid = Carbon dioxide -+ Water (i)

Smc_e ﬂ:lﬂ concentration (partial pressure) of oxygen in the
lungs IS high, reaction (i). tends to yield acid and (HB) OX, and
the acid acts through reaction (ii) to release carbon dioxide
which diffuses out of the blood into the lung.

On closer scrutiny the haemoglobin molecule itself is an

ultrastable control system (its chemical activity and structure
are modified as a function of its environment), such that between
very wide himits of oxygen concentration (partial pressure) the
amount of oxygen carried away from the lungs by a given volume
of blood remains constant. The mechanisms of ultrastability
occur at a sub-molecular level and act upon the equilibrium
bc:m:ﬂf:n the two forms of haemoglobin: thus increase in either
acidity or dissolved carbon dioxide favours the dissociative
reaction from left to right in (i).
_ When t?lf: blood corpuscle reaches an active tissue it is placed
in an environment where the partial pressure of oxygen is low
and that of carbon dioxide, diffusing from the tissue fuid
through the capillary wall and into the blood, is high. The red
corpuscles contain an enzyme, carbonic anhydrase, which
catalyzes the reaction:

Carbon dioxide - Water — Bicarbonate ion -~ Acid . . . (1ii)

Carbonic anhydrase
1n corpuscle
Must of the carbon dioxide is absorbed in this process. The acid
thydrogen ion) is used for reducing the oxygenated haemoeglobin,
as a result of which oxygen is released to the tissues. Most of
the bicarbonate ion passes into the blood plasma where it is
neutralized by acid groups on the plasma proteins, Hence the

reactions inside a corpuscle placed in oxygen-deficient surround-
ings are:

BIOLOGICAL CONTROLLERS 7i7

Carbon dioxide 4 Water—>Bicarbonate + Acid
({from tissues) (becomes bound by the
plasma protein in blood)
(HB) OX + Acid—>(HB) RE + Oxygen
(to tissues)
....... (vi)

Now all this depends upon a chain of systems, whereby the
blood is kept in equilibrium with metabolic activities and the
blood itself, corpuscles, plasma, protein and so on, is maintained
intact. As an overall result, however, the acidity and the.carbon
dioxide partial pressure in the arterial blood act as good indices
of overall metabolic stability. These indices chiefly control the
rate and depth of breathing. Viewed in this way, breathing is a
homeostatic system, which keeps the partial pressure of carbon
dioxide in the arterial blood at about 14 m.m. Hg., and the
acidity at pH 7-4.

Breathing includes inspiration and expiration of air. Inspira-
tion of air occurs through contraction of muscles which lift the
ribs and flatten the diaphragm, which increases the chest volume
and sucks air into the lungs.

Expiration of air is ordinarily passive: the structures return to
their original shape elastically when the muscles are extended,
but the abdominal muscles assist the action when deep or rapid
respiration is needed. The muscles are enervated from two
groups of neurones, the inspiratory and the expiratory groups,
situated in the medulla of the brain. Within the medulla itself
appreciable activity amongst the inspiratory neurones will
inhibit activity amongst the expiratory neurones and vice versa.
Connections ascend in the brain from the inspiratory region to
further neurones which delay the nerve impulses and return
them after delay to excite the expiratory neurones. Taken together
these regions constitute the respiratory area which because of
the ascending and descending connections, gives forth a rhyth-
mically modulated train of nerve impulses sufficient to sustain
rather crude respiration.

The rhythm is improved, the depth and rate of inspiration
modified, by a feedback called the Hering Breuer reflex. Nerve
impulses from stretch receptors in the lung are returned to
excite the expiratory neurones. Thus inspiration and extension
of the stretch receptors beyond a limit leads to expiration.
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Whilst either mechanism can produce thythmic respiration

alone, they work jointly in the healthy organism (a so-called
‘redundancy of mechanism?).

The basic re?.piratnry system is controlled as in Figure 18.
I. By the direct action of carbon dioxide and blood acidity
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Fig. 18. The respiratory control system

upon the respiratory area. Increase of either variable will increase
respiration rate and depth. Individual neurones seem to be unaf-
fected by changes of blood oxygen until it falls to a level at which
anoxia and misfunctioning occurs.

2. By nerve impulses from receptors in the aorta and carotid
artery bearing on the respiratory neurones. These receptors are
somewhat sensitive to carbon dioxide and blood acidity, but
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exceptionally sensitive to blood oxygen if its partial pressure
falls from the normal value, about 100 m.m. Hg, to below
80 m.m. Hg. Respiratory control can be mediated through 1 or 2
alone, but, normally the systems co-operate.

3. Voluntary activity can dominate our breathing. A number
of variables, such as blood oxvgen, nerve impulses from the skin,
adrenalin and other hormones, modify the sensitivity of the
respiratory neuroncs and the specific receptors. This action,
which is like setting the level of a thermostat provides a special
case of ultrastability.

4. Finally, there is interaction with other systems, most notice-
ably the cardiac control system. There is a deal of interaction in
the brain itself and, at a reflex level, the aortic and carotid
chemical recepters are closely associated with pressure receptors
that mediate several cardiac reflexes and to a limited extent the
pathways interact. Finally, the respiratory system depends upon
an adequate circulation and chemical equilibrium. Conversely,
these depend upon respiration.

The Brain-like Artifact

The brain is the biggest biological control system and the most
modelled. First there are simple didactic contrivances such as
Grey Walter's ‘Tortoise™* and Angyan’s ‘Turtle’® These are
animal-like automata, responsive to light, sound and touch
stimuli and able to move 1n various directions. The logical content
of either goes into a modest state graph (the possibilities of
conditionable reflexes involving a few neurones), but their gam-
bits suggest the behavioural consequences of the theory 1n a
compelling fashion, which 1s the main object.

Then there are sophisticated models intended either as
brain artifacts or as cognitive automata in their own right
(commonly these refer to higher animals). We have encountered
two of them already, in the latter capacity, MacKay’s imitative
controller and Uttley’s conditional probability machine. Uttley’s
machine does embody an explicit hypothesis about the nervous
system but its units can be variously interpreted — as neurones,
groups of neurones, or unspecified, functional entities.

Next there are brain models, committed to a physiological
interpretation. Now these have been advanced in connection
with very simple and very elaborate structures. The simple ones
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are beyond our scope, except to notice that quite a lot is known
about the behaviour of neurones individually, their synaptic
connections and their behaviour in a ganglion. At the other
extreme, is the mammalian cerebral cortex, a laminated mass of
richly connected ncurones. Oddly enough, we can be more
confident about this region than we can about areas of inter-
mediate complexity because it seems almost certain that though
the statistical structure and overall layout of the cortex is
inherited, the detailed connections are not regular enough to
merit attention and are certainly not consistent from brain to
brain. Though the details probably matter a great deal they
cannot readily affect those features of behaviour which are com-
mon to all brains. Studies of statistical histology, like Scholl’s®,
give plenty of data about the statistical connectivity which is
present. From this, and information about individual units, it is
possible to construct a statistical model* of an arbitary chunk
of cortex and test its behaviour against experimentally founded
predictions, for example, from Lashley’s work®®, that large abla-
tions should exert little obvious effect. Eccles®® made gualitative
proposals some years ago, but R, L. Beurle®” *® was the first to
present a thorough mathematical formulation (see Appendix 7).

His model, using ‘artificial neurones’ is somewhat like the
Eucrates system, except that the neuronal parameters are realistic
and, in place of a fully connectable network, there is a replica of
Scholl’s statistical data. In one version, there is a realistically
variable connectivity, which simulates synaptic changes.

The model is concerned with properties of neurone aggregates
(there is, incidentally, plenty of evidence that neurones cannot,
in fact, be considered in functional isolation) and the block of
‘imitation cortex’ is regarded, for analysis, as a non-homogencous
transmission medium. Activity is manifest as waves of excitation
propagated through the medium as shown in Plate IV. If the
block is coupled, as in Figure 19, to an environment, it acts as
an imitative controller and as no experimental finding is seriously
contradicted, it acts as a brain-like controller. I shall baldly state
some of its properties.

* If the rules for individual neurones are taken as analogous to the
Lagrange equations for the motion of a particle, R. L. Beurle's model
of activity in cortical material is analogous to the Gibbs Boltzmann
model for a gas.
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Fig. 19. A self-organizing control system using R. L. Beurle's model
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One condition of the model is that not all the elements En a
given volume may be excited at once. According to our previous
dictumwe should interpret this as a stipulation ; that there must be
competition for the energy needed to maintain activity. Actually,
Beurle secures his condition by a special inhibitory fmdbac}c
but, whatever the details, it is true that transmission of a wave is
a competitive process. Also the transmission process entails
co-operation (for uncorrelated excitation wiii‘ bclsuppress?d).‘

Learning occurs, either through self-excitation nf circuits
or through plastic changes in connectivity, or both. It is the

form of a wave that is learned, rather than a set of particular

events. The system is able to generalize and to build up its own
criteria of similarity between wave forms. _ ;
let a wave ), pass through the medium, inducing pia'_stm
changes = which reduce the subsequent impedance of the medium
to this particular wave A,. Commonly the impedance is also
reduced for a set of other waves, say A, .... A. In this sense
members of the set A, As . . . A, are similar with respect to the
artifact when they occur upon subsequent occasions. :

Two or more waves of excitation may interact with one ar}ﬂthﬂr
giving rise to progeny, which is one source nt" ]rariun'an in the
system (anotheris the autonomousactivity of individualneurones).
Consider points in the medium so coupled that the artifact is self-
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r:m:?ting and impulses continually recirculate. Since a wave of
excitation modifies the structure of the medium in which it is
transmitted and the prevailing structure determines the impedance
:[}f the medium for a particular form of wave, there isa necessary
interaction between structure and activity and vice versa. If a
wave A induces a structure .=, and = offers a low impedance to A,
one perpetuates the other and the pair A, Z is a pattern. In given
conditions a patfern may or may not survive but the patterns
which do survive are imitated and reproduced.

Finally, recall Figure 19 of the artifact as a controller coupled
to an environment and provided by an external arbiter with a
reward variable 6. Let us arrange that increase in @ increases the
density of elements that can become active (which is the most
general kind of ‘reward’). Manipulation of @ will lead to natural

selection, favouring the reproduction of those patterns which
entail an approved behaviour.

We call the artifact, the actual assembly, an ‘evolutionary
network’.* Thenetwork itself cannot be said to evolve (its possible
states are always evident). On the other hand, the active region
in the network which is the systemn we refer to as ‘learning’ does
':;‘.\f{}l"u’ﬂ (an evolutionary network is an assembly which acts as the
immediate environment and the material substance of an evoli-
tim:lar}' system). It’s activity is described by Beurle as wave propa-
gation in a non-linear medium. Peter Greene®proposed a method
formally comparable to quantum mechanics, for analysing the
modes of oscillation. Von Foerster and I have advanced an evo-
lutionary _n:rz}vzflnﬂ:*lEE which lays emphasis upon ‘competition® and
co-operation’.

Problem Solving

When a control system achieves stability it ‘solves the problem’
posed by not being stable. To say a controller is a ‘problem solver’
only when formal logical variables are manipulated and 4 is an
explicit function of their state seems unduly pedantic. Now we

* Evolutionary networks have been computer simulated (by Beurle?s
Foulkes®® and using a much more resiricted system, Farley and
Clark®!) and realized in a restricted, but logically tractable, way on a
special purpose machine (G. D. Willis and his colleagues®? at
Lockheed). By far the most advanced autematon, Plate I(ii), designed for
these experiments, has recently been completed by Murray Babcock
of the University of Illinois®3,
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have seen that some controllers ‘learn’ how to ‘solve problems’
and the change of words brings us to the crux of this learning
process. For it 1s not remarkable to find a system has responsive
characteristics altered by past events. Given appropriate stimuli
this is true of a chunk of iron or a slab of gelatine, certainly of
any system with richly coupled subsystems and multiple equili-
bria. Such systems are conditionable (if a led to wand & to f§ then,
after ‘learning’, either a or b lead to &) and open, perhaps to
operant conditioning (the transition depends upon high valued 8)
But a system which ‘learns to solve problems’ must also learn
relations of similarity between them and between the ‘sub
problems’ into which they decompose if only because we define
problems as instabilities of the environment which can be cate-
gorized. Operationally, the learning artifact must apply Minsky
and Selfridge’s ‘basic learning heuristic’® which reads, ‘In a
novel situation try methods (parameter adjustments, network
organizations) like those which have worked best in similar
situations’. (Abstract problem solution does not always have the
continuity which is more or less guaranteed in the real world and
the necessary paramecter adjustments are often less like “hill
climbing’ than ‘looking for a hill to climb’. In the extreme case
of ‘true or false’ @ contours in the controller’s phase space reduce
to a flat plain with a single peak at the organisation which solves
the problem. @ gives no indication of proximity to a solution.
Jack Cowan's work on the possibility of assigning®® proximity
measures (like ) to problems represented in different systems of
logic (Boolean, Lewis, Post) are particularly relevant).
QOurevolutionary networks can generalize upon their own state,
hence, formulate similarities of method, specifying categories of
adaptive strategy. Being imitative their image of the world is in
terms of possible action. Similarity of method and similarity of
situation are not, in this case, distinct. But we must emphasize
that the similarity criteria may be unrelated to any that we
accept and unrelated to the values assumed by 8. They stem from
the initial topology of the network and the rules of evolution.
On these and other grounds Minsky and Selfridge® doubt
the utility of evolutionary networks and approach problem
solving from the viewpoint of ‘artificial intelligence’. A typical
intelligent artifact is the Newell, Shaw and Simon computer®’
programme for learning to prove logical theories. It is not
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‘automatic’, but permissible operations and heuristics (broad
suggestions about fruitful procedures, for example; suggestions
about what is and what is not similar) are well defined.

Whilst admitting their contention, in the case of formal problem
solution, 1 do not share their pessimism about evolutionary net-
works.* Often in real life control, a solution is needed but the
method of achieving it is irrelevant. The network also comes into
its own when we, ourselves, cannot formulate a problem. We see
a chaotic world, i.e. an inherently unstable process, and wish
for order of any kind. Now efficient control does depend upon
(in some sense) matching the evolutionary rules of the network
to those of the world. I agree that when we have said in what
sense, the matching process may amount to ‘finding a good
heuristic’, in which case the evolutionary approach and artificial
intelligence are complementary.

Recognition and Abstraction of Forms

Receptive controllers need a diversity of evidence and particular
fixed instances are inadequate. Rather, we must examine the
mechanisms underlying the abstraction of an observer (Chapter 3)
Suppose a visual sensory field, a retina of »n binary receptive
clements (rods, cones). The forms which interest us are, for
example, characters ‘R’, ‘8’. ... Now, although we define the
character ‘R’ ostensibly by pointing to RrR=, RR, R®, Rr-as
mstances of ‘R’ neither a finite automaton nor we ourselves
register each exemplar, even less the black and white particles
that make it up. What we mean by ‘R’ is something invariant
under various groups of transformations of the figure (first pair,
rotations, second pair, dilations, third, displacements, and
fourth a non-geometrical transform called upper to lower case),
in short, a Gestalt. The primary result in recognition was
obtained by McCulloch and Pitts®®  when they showed that a

l * But I do not condone a lot of loose talk about ‘random networks’.
Random network’ should mean a very definite initial structure deter-
mined by a random number table, presumably because the initial
structure does not affect those features of behaviour that interest us,
providing the behaviour is averaged over an ensemble of artifacts (as
used by Rapoport, Shimbel, Uttley). But, in literature it can mean
almost anything. In particular neither R. L. Beurle’s model nor mine
are random networks. One has the statistical constraints of a brain,
The other is fully connectable,
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finite automaton - a fixed network of ‘artificial neurones’ — could
extract Gestalten.

Recently Lettvin and Matturana, working in collaboration
with McCulloch and Pitts,”™ have discovered a network in the
frog performing abstraction up to the level of a conceptual
category, a primitive Gestalt. The frog retina 1s divided into
regions, receptive fields, containing many receptors. For each
receptive field, networks among the bipolar and ganglionic
neurones compute the value of four distinct attributes:

(i) Presence of sharp edge of an object imaged upon the
receptors.

(if) Convexity of dark object.

(iiil) Movement of an edge.

(iv) Overall dimming.

These attributes have significance to the frog, for example (ii)
is almost perfectly a bug detector (and he eats bugs), whilst (iv)
indicates a predator. The frog sees his world in this reference
frame, not as patches of black and white.

Fibres from each receptive field travel in the optic nerve to four
layers of the colliculus, one attribute to each layer, neighbouring
receptive fields to neighbouring segments. The dendrites of deeper
cells ramify amongst each layer, hence any one receives, In terms
of relative excitation, evidence about the locus of a state point
in a four-dimensional attribute space, that characterizes a parti-
cular receptive field. The ensemble of possible loci is the frog’s
universe of discourse, a subset of the ensemble a conceptual
category. The frog decides whether his immediate environment
is In a given category and takes action accordingly.

The design of attribute filters is a well-developed art (such
things as convexity receptors, number of angle receptors, area,
overall curliness, are easy), and extends also to less tidy, but
more natural percepts (neither a teapot perceptor nor something
especially sensitive to blondes is absurd).*?* But though they

* Consider a sensory field, for example, a retina with » light sensitive
receptors and a given property, such as squareness. The design of a
filter to extract (or detect) this property in retinal images can always
be approached by brute force — specify subsets of logical elements in
parallel — each subset sensing one square form, then combine their
outputs. But the number of elements, about-2~, is absurd. The frog

does the job more efficiently. But he sees bugs, not what we want him
to see. The group working at the University of Illinois®® are concerned
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may involve internal feedback these are fixed filters. We can use
them to imitate frogs, for a frog does not ‘learn’ to recognize new
‘percepts’ and there is plenty of evidence, from regeneration
experiments, to show that his attribute space is genetically
determined. Man, on the other hand, spends most of his days
‘learning to recognize’. The dilettante observer of Chapter 2 is
the rule of behaviour, the scientist an exception. For a readable
account of our odd, changeful and intensely personal atiribute
space, our cognitive world, see M. L. Johnson Abercrombie’s
book.™ But even we have something inbuilt. Some results from
Cooper and his associates at Haskins Laboratories, show what
happens for hearing. We are born with gene determined filters
that select attributes of speech sounds —such as the attribute
common to ‘bi’, 'ba’ and ‘bu’. In our social environment we
learn, not new attributes, but the yen to regard certain values of
the attribute as identical (those that utter ‘bi’ and those that
utter ‘ba’) and to discriminate these sets of values (‘bi’ and ‘ba’)
as distinct.

Learning ro Recognize Forms

When it comes to making cognitive ‘pattern recognizers’ there is
argument over the merits of ‘pre-programmed’ and ‘learning’
machines. A wholly inflexible device has little practical value for
even printed characters come mutilated or displaced from their
reference position. The most stereotyped but still useful machines
(I happen to know the Solartron E.R.A.) work at frog level. At
the other extreme, Frank Rosenblatt? has a particularly malleable
network, the ‘Perceptron’, that can be trained (essentially by
operant conditioning) to recognize characters. Facilitated paths
in the trained network determine the attribute filters. By compari-

with input filters for self-organizing systems which must be able to
detect arbitrarily chosen attributes. They have tackled the design
problem in several ways. One approach has been to reduce the 'size’
of the ‘artificial neurones’ in a network until the network itself
becomes a transmission medium described by continuously expressed
filter characteristics that depend upon a distribution of connectivity
(one worked out case is a curvature detector). Another approach makes
use of topological relations between retinal images and particular types
of discrete connectivity. One worked out case is a number detector,
not a counter, but something which appreciates how many objects
without counting them. The realizations of either approach can be
transformed into each other.
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son with a structured automaton the Perceptron learns slowly.
However, this is no real criticism (more cogent criticism is aimed
at its limitations as an abstractive device) and the device would
come into its own if we did not know exactly how or what to
recognize at the outset. It is difficult, for example, to specify a
‘defect’ in a woven fabric ~ but a trainer can recognize a defect
when it occurs and tell a Perceptron, inspecting the same sample,
that it should copy his preferences.

Nearly always we can tell the machine something and, surely,
we should tell it, as part of its programme. But we should not

" prevent it indulging its own breed of recognition or expect

logicab nicety amongst the attributes it selects. We do not really
recognize signatures in terms of neat geometrical attributes —
they ‘remind us of faces’ or seem more or less "wiggly’ and we
must tolerate just as unruly attributes in an automaton.

Nearly always, also, the optimum selection of descriptive

attributes will change with experience and an adaptive machine

is needed. Oliver Scifridge’s form recognition computer pro-
gramme, ‘Pandemonium,’ is a happy compromise.”™ It is an
hierarchy of sub-routines or computing elements, whimsically
called ‘demons’. On top is a master-demon which receives mputs
from several lower-level cognitive-demons. Each cognitive demon
assimilates evidence that the state of the environment has a
particular form, i.e. R or & and provides an oufput indicating its
degree of conviction. The master-demon decides that one or
another state exists by selecting the cognitive-demon with the
largest output. The cognitive-demons receive their evidence from
sub-demons (analogous to sub-controllers) which we interpret as
attribute filters. Now the master-demon and cognitive-demons
together are an ‘overall controller’ and they obtain an evaluation
# upon the ‘adequacy’ of their performance from an e:xte?nal
source. To maximize & the attribute filters are adjusted (ie.,
evidence from the several sub-demons is differently biased) which
entails hill-climbing in the phase space of the Pandemonium.
But the initial selection of sub-demons is arbitrary, conceivably
stupid, and it may be necessary to discard some unsuccessful sub-
demons and acquire new ones. To avoid losing all trace of the
previous adjustments fresh sub-demons are can:s.tructed by
combining the components of the old demons in a different way.

Hence the system is evolutionary.




6 Teaching Machines

TEACHING is control over the acquisition of a ‘skill’ (which
after Bartlett, implies conceptual gambits like speaking a language
ang_sﬂlving a problem, as well as ‘motor skills’ such as type-
writing or flying an aeroplane). The old idea that repetition
writes engrams on to the fallow brain has been discarded (and
also, with the possible exception of latent learning, the notion
that man resembles a tape recorder). Learning is active and
occurs when there is motivation. Teaching entails some effort on
the teacher’s part. Hence, a ‘teaching machine’ interacts with a
student. Magic lanterns and simulators, that merely present data,
do not ‘teach’.

The first ‘teaching machine' was devised by S. L. Pressey?®
about 1920. Whilst he recognized its instructional role it was
chiefly intended as an automatic intelligence tester. The student
is presented with questions selected by a programme (a primitive
syllabus). He answers by selecting one of several alternative
response buttons and is marked right or wrong by comparison
with a programmed code (a primitive text-book). If right, the
machine presents the next item in the question programme. If
wrong, the student is informed and must make another attempt.

Norman Crowder™ has developed a much more flexible
machine. Programmed items are back projected from film strip
on to a translucent screen. A typical item is a page of written or
diagrammatic material describing a principle. Teaching algebra,
for example, it might be one of the principles, like substitution
of variables, needed to solve simultaneous equations. Also there
are problems embodying the principle and alternative answers.
The student selects one of these by pressing buttons, and his
response 15 evaluated. The machine ‘decides’ the next item
according to its evaluation. If ‘correct’, for example, it presents
the next item in the programmed sequence. If in ‘error’, it selects
a sub-programme designed to eliminate whatever misconception
is revealed by the particular kind of error.
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Skinner has contrived a somewhat different teaching machine.?
The student composes a response, rather than selecting one
from a given set, and he makes his own evaluation against
‘correct response’ data supplied by the automaton. In addition,
Skinnerian programmes are built up in minimal and always
comprehensible stages. There are, nowadays, many variations on
each of these themes. But, from a cybernetic viewpoint, all such
fixed programme teaching machines are ‘automatic controllers’.
They provide ‘knowledge of results’ feedback which motivates
the student and an unknown, or if the programme is repeated,
unlearnable, sequence of items to provide the requisite variety.
The underlying assumption i1s that a best method of teaching
exists and this is embodied in the programme and the decision
rule that determines the machine behaviour. There is plenty of
evidence that teaching machines work passably well. But because
of the fixed programme which embodies it, the method can only
be best for an average student — for those aspects of behaviour
which are stationary when averaged over an ensemble of indivi-
duals (by definition, the student who learns is non-stationary.
What the programmer assumes is an invariant seguence of
stationary states, that characterizes optimum learning of the skill).

Now this puts the onus for adaptation upon the student. He
must accept the probably laudable dogma of the machine — and
he does. In contrast, a real life private instructor, although he
knows what he wants to achieve, has few preconceptions about
how to achieve it —and he continually adapts his teaching method
to the changeful quirks of each individual. Like the fixed pro-
gramme machine he observes the student’s response. Unlike it,
he changes his decision rule, even his syllabus, and the inter-
action has the logical status of a conversation, which entails
compromise between the participants at each stage. The private
instructor is at least an adaptive controller and there is reason to
believe that, for some skills, he is more efficient than a fixed

programme device.

Adaptive Teachers
In 1952 1 became interested in the interaction between men and

‘learning’ machines, constructed some rather whimsical automata
and managed to achieve a stable, in a certain sense, a ‘conversa-

tional’, man/machine relationship. Since 1956 Bailey, McKinnon
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an:_l and I have applied similar methods to the synthesis of
teaching systems which will act as private instructors,

Syppnse: we have to teach maintenance of a data processing
equipment made up of eight units performing logical operations

THE STUDENT HAS A REPLICA OF THE UNIT LAYOUT OM
HiS RESPONSE BOARD, I INGICATING RESPOMSE BUTTON
THAT HE CAN PRESS TO SIMULATE REPAIR. PROCEDURES

PERFORMAMNCE i EVALUATION

TEACHING MACHINE
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Fg. 20. Structure of an adaptive teaching system used for maintenance
training

like ‘and’, ‘or’, and that the simulator of Figure 20 is available.
In the simplest case, any unit may become defective, but only
one at once, and the student is informed, by a signal lamp a,
whenever there is a defect. In real life he is required to locate

Tl
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and replace the defective unit. On the simulator he selects one of
the eight unit positions on the lavout panel in front of him, and
presses a button to indicate replacement. The student is also
provided with the input state (binary variables represented by
signal lamps &) and the output state (signal lamps ¢) of the
equipment. This information is available in real life and, again
in the simplest case, a short sequence of it, logically specifies the
defective unit. Hence, a fully trained person can select the right
unit and repair it immediately. But, before training, the simulated
equipmentappearsas a “‘black box”, and givenno further informa-
tion the student flounders around, trying replacements until one
of them puts out the defect lamp. To prevent this hapless guess-
work, the simulator can, but need not always, provide “partial
information’ about the state of the individual units (allowing the
student to ‘see inside’ the black box), which i1s not available in
real life. Suppose that there are four states of partial
information, none, &, f§, and 7. Since time is at a premium, we
should like the student to deal with defects as rapidly as possible
- 50 he is allowed a maximum time after which he must give up -
indicated by a clock 4. (In fact, the clock rate, and thus the
allowed interval is a further variable, manipulated by the teacher.)
Finally, an index of successful performance @ (f) is computed
and displayed on a dial.

It is not too difficult to find a measure @ (r) with the obviously
necessary property that it is minimized by aimless floundering,

and/or undue sloth and maximized if the student deals correctly

with each defect i = 1, 2, .. .8, when the defects appear with
their real life probabilities. This last stipulation avoids spurious
success due to dealing with a few favoured defects. We shall
construct a plausible measure. Let each response to each defect
i, be compared in an electronic comparator, with a programmed
‘text-book’ that specifies the correct replacement, given i. Let ¢, (1)
= 1, if, and only if, at 1, the i-th defect is presented and the
correct replacement made, if not, &, (f) = 0. Let R, (1) be inversely
proportional to the student’s latency upon this occasion. Let p,
be the real life probability of defect i and yi (¢) its frequency of
occurrence at this stage in the teaching process. Then, at an instant
I = ty, we define: :

6*(1), = Average over all defects i, average over an interval {47,

Efé_r (0 R (@11 —(p — x: (0]
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Of course, 0*(1) is one of many possible measures — in particular —
it takes no account of information derived from mistaken re-
sponses (since we do not know the significance of mistakes) and
is descriptive if and only if a correct response occurs within the
allowed interval. Hence, we must introduce partial information
in order to ensure that a reasonable number of defects can be
dealt with, and that 0* (1) is descriptive — if for no other reason.
But if we do, the job of selecting a replacement is degraded.
Success with partial information should count less than success
without it. Thus we define a cost of partial information = § if
there is some partial information, 0 if there is none (there are
no grounds for supposing that & or f is more valuable than ,
or vice versa), Finally, let 8 (1) = Average over i, average over I,
— 7, of (€, (1) R. (1) [1 —(p, = {f}}ij — 0 {1).

A training routine is a sequence of defects selected together
with some state of the partial information, that is, a sequence of
problems. An optimum training routine isa sequence of problems,
such that the rate of increase in & () is maximized. Consider first
how a machine like Eucrates, programmed as an evolutionary
network, learns to select the defects of an optimum routine. As
in Figure 20, its output states (a subset of its possible states) are
associated with defects, i.e. its trial actions introduce defects into
the simulator. £ (¢) is used as a reward variable which selects
modes of organization, 1.e. systems which behave as required.
Now consider the partial information. In practice a separate
machine (a sub-controller) is coupled to each defect and the i-th
sub-controller is supplied with an individual average 8, {r) of 8 (1).
States of the i-th sub-controller are related to states of the partial
information which is delivered with the i-th *defect’ and it presents
or withdraws the partial information to maximize &, (f). This
arrangement has been experimentally realized. The system as a
whole becomes stable. Haphazard trial making gives place to
coherent patterns, sysfems in the network that are reproduced.
Soon after this measurable coherence is manifest the student
reports a sense of participating in a competition (some say a
conversation) with a not dissimilar entity.

Descriptive Model
To make sense of the process we must talk about sysrems. A
brain is modified by its history, but, like any other evolutionary
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network, it does not learn. The student who does lecarn is a
system developed in the brain. When the system as a whole is
stable the two subsystems, man and machine, are indistinguish-
able and the student uses bits of machine like bits of his brain
in solving a problem. But this does not mean they are physically

meshed together. ' .
The ‘conversation’ that leads up to this state entails two

formally distinct activities:

1. The controller must ‘keep the student’s attention’ which is
a special case of ‘requisite variety’. The student is a system with
given variety of behaviour, say u; that is, he must atiend to
something. u is a measure of the rate at which data of some
kind must be processed, or decisions of some kind made, in
order that the system shall have the status of a "student’. Suppose,
then, that he does attend to the problem display. The variety ofa
problem, with reference to the student — for short —its “difficulty’,
is the amount of decision making needed to reach a solution
(imagine a choice process, whereby uncertainty about a response
is reduced until one response is actually made). Now to keep the
student’s attention the controller must select a sequence of
problems which have an average ‘difficulty’ at least equal to
Unless it does, the student will daydream. Unfortunately, if it
does, there is no guarantee that he will not. But, given the
matching condition to be cited in 2, # (7) is an estimate of ﬂwir:fd!
difficulty and the defect selection tends to satisly the requisite
variety condition. |

2. Problems must be matched to the student. At the !nwFst
level, partial information sub-controllers do this job. They give
plenty of partial information, making the problems mt:ﬂ_agible
to start with and then withdraw it (o first, or f first, according to
their adaptation) as @, (#), for the i-th sub-controller, becomes
greater. 4

This is not the whole story. Problems are not appreciated as
unitary entities, and their sequential ordering is equally pagt nf_' the
matching process. In turn, this depends upon the generalfz_atmns
built up in the controller. Recall the nperatiunai_deﬁnmun_ of
meaning in Appendix 5, namely, the selective function
of a message relative to the student, and the notion that messages
operate upon the attitude of a recipient. Now, grublems act as
messages in the required sense, for the act of decision does modify
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the student’s attitude, and *matching’ as used here, means setting
up conditions that render messages meaningful, or equivalently,
adapting the object language of the discourse to suit the student.

1 is impossible unless 2 is approximately satisfied, for 8 (1)
is arbitrary. 2 is obviously impossible without 1. So it all
depends upon the student, and however cajoled, there is no
guarantee he will attend. But once the ‘conversation’ has started
it has an inherent stability that stems from two-sided adaptation.
Student and machine reach a compromise.

What does the student gain by this co-operation (tauto-
logously, a chance to communicate) ? The trite reply is an increase
in @, as displayed on his dial — which is a sort of payoff. But, after
looking at the way people behave, I believe they aim for the non-
numerical pavofl of achieving some desired stable relationship
with the machine. The dial is of minor importance. Indeed, in
other teaching devices it is omitted. .

The obvious criticism; that a real machine cannot have the
information capacity of a brain, even in a restricted universe of
discourse, is answered by this co-operative process. The system
develops not unlike an embryo, by autocatalysis. At the first
stage, the presence of the teaching machine gives rise to a system,
an organization, which catalyses the appearance of a similar but
larger system. This engenders another, which is also catalytic.
In a teaching system we require that the sequence of catalytic
systems have behaviours that lead to greater proficiency, at the
skill concerned.

To summarize; in conversation a controller is aiming:

1. To keep the student’s attention. This action is competitive,
since increasing problem variety at ¢, tends to defeat the student
at t. However, it does induce him to learn and thus gain greater
success at r + 1.

2. To adapt the object language, which is a largely co-operative

In a skill like fault detection we cannot practically separate 1
and 2. But these functions are separable when there is a well-
defined method of stage-by-stage learning.

Add Listing

Trainees learning to work a ten-keyv add listing machine have to
translate chunks of numerical data such as ‘1278, 253447
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(obtained, in real life, [rom invoices) into rapidly performed
sequences of key depressions. At the outset, each chunk poses a
realistic problem, and it happens that people learning this skill

describe the problem in terms of more or less consistent descrip-

tive attributes.* Some of these are: :

(i) Number of items in a chunk of data. (Two attributes.)

(it} Whether the items entail horizontal runs on the keyboard
{given the usual layout *123°, ‘456°, '789"), or

(iii) Vertical runs like ‘147, ‘258, and 369",

(iv} Specific constraints such as ‘all items selected from the
subset 2§87,
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Fig. 21. An adaptive teaching system applicable if the skill entails well-
defined perceptual attributes

* The integrity of an attribute depends upon a transitive ordering
under the measure function, i.e. whether increasing its value increases
the ‘difficulty’. Many numerical attributes arc deceptive. It is more
difficult to deal with six than with three tems. more difficult to deal with
five than four, but because of the keyboard layout five may be more or
less difficult than six. Hence, we use two number of item attributes.
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Hence a problem is conceived as something possessing or not
possessing these attributes in varying degree and the skill is per-
formed after the manner of an elaborate frog that deals with
specified conceptual categories. We use a teaching system of the
kind in Figure 21.77 The controller learns the effect of changing
attribute values upon # (as before, computed from the student’s
performance). Then, hill climbing in the attribute space, it aims
to maximize {. The mechanical arrangement involves an atiribute
filter used in reverse. A given state of the controller specifies, for
example, that the data presented at this instant shall have four
items selected from numerals 2-8, and a horizontal run. The *dice
thrower’, which supplies the requisite variety, selects some problem
from the specified set. Now, for any state of the controller,
Figure 21, is a relabelled version of Figure 6 in Chapter 3. Hence,
recalling the discussion, this teaching machine presents the
student with a suitably adapted sequence of models of the
environment he must eventually deal with.

Card Punching
For most keyboard skills the teaching system can be partitioned

into separately adjustable variables with a consequent reduction
in controller search time. Card punching of business machine
input data cards, is a case in point.”™ Trainces are given exer-
cise lines of twenty-four items of alphabetical or numerical data.
This is long enough, under working conditions, to prevent the
student learning the entire sequence. For each numerical character
the student selects one of twelve keys, for each alphabetic charac-
ter, a pair, and after training a response time (or latency) of about
(-2 seconds is required, To avoid technical niceties I shall describe
a prototype, but SAKI of Plate IT isa production machine derived
from it. There are two displays. The upper display is a set of four
programmed ‘exercise lines’ and is inserted together with a pro-
grammed ‘text-book’. Each exercise line is designed to be different.
For example, one may have particular sequences of items; one
may lack alphabetic items; and so on. The machine selects one
exercise line for rehearsal and when it does so an indicator moves
from right to left showing which item the student must deal with.
The lower ‘cue display’ is an array of signal lamps arranged as a
replica of the keyboard. Initially, as the indicator moves along
the exercise line these are illuminated to show, in the case of a
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numeral, the correct response key position or, in the case of an

alphabetic character, the correct response pair.

The machine adjusts four sets of partitioned variables:

1. After each rehearsal, it selects a further exercise line, pos-
sibly the same one. The selection depends upon a performance
measure, averaged separately for each exercise line. The one with
the least valued measure is selected. Hence, the student receives
most practice upon the sequence he finds most difficult.

2. The interval allowed for dealing with each item, a pacing
variable, is determined by a measure computed and registered
in a separate memory device for each item. Let A/, be the interval
allowed for the i-th item, and 7, the latency. This measure is a
weighted average of differences. Ar,—T7; taken for previous
occasions when the student made a correct response (an error
response subtracts an increment from the measure). 4, is the
machine's prediction of 7, and with experience ¢, approaches T,
at a rate determined by the weighting. If we think of a choice
process, going on in Az, to decide the student’s response to the
i-th item, reducing A4¢, makes the student respond when he 1s
less certain; for, if he does not respond soon enough, he cannot
respond at all.

3. We can think of ‘cue information’, which is equivalent to
‘partial information’, assisting the choice process and compensat-
ing for a reduction in As. But its appearance can be delayed
until late in the allowed interval or it may be removed altogether.
The machine has a tendency to delay the cue information, which
builds up at a rate f for each item. This tendency is reversed if
the student makes error responses, on this item, or if he does not
respond. Notice that when the machine selects an exercise line,
it does not merely select a sequence of items but a sequence of
problems determined by the At, and the cue information delays
associated at a given stage with each ifem.

4. The machine adjusts the parameters z and fi so as to maximize
an average correct response rate & (1)

To start with, items are presented slowly at a uniform rate, and
together with complete cue information. Each exercise line is
presented in turn. This is a period of experimentation when the
teaching machine builds up a pattern representing the student’s
behaviour in its memory registers. As the student becomes pro-
ficient the pace is increased and the cue information selectively

5}
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withdrawn. If, as a result of this adjustment, the student makes
an error response, say at the i-th item, or even without error,
responds slowly, the process is reversed for the i-th item, i.e. the
machine increases At,and brings back the i-th item cue information.

Learning curves for card punching have plateaux corres-
ponding with the mastery of sub skills which entail grouping of
data into conceptual categorics that are appreciated and re-
sponded to as a whole. An experiment, due to Van der Veldt,
illustrates the point.”® Van der Veldt's subjects were presented
with a rectangular array of signal lamps, cach one named by a
nonsense syllable. The experimenter announced a nonsense syl-
lable and the corresponding lamp was illuminated and the subject,
viewing the board indirectly, was required to Iocate the illuminated
lamp. At first the subject could only deal with single nonsense
syllables. Later he grouped the lamps into sub sets and made a
combined movement in response to a word made up of several
nonsense syllables. Ultimately, after using this response mode,
he was unable to locate a single lamp, evoked by a single
syllable, except by reference to the group in which it was
included.

The grouping which exists at a given stage is reflected in the
distribution of values in the memory registers. The action of the
teaching machine encourages the student to increase the size of
his group. Ultimately the cue information is withdrawn completely
and the pace is maximized.

The systemn as a whole can reach a stationary state if, and only

if, the student is making correct responses at a rate determined

by the maximum excursion of the control parameters, and
supposed adequate to satisfy the fully trained performance
criteria, and if he is doing so for each kind of material.

Aptitude Testing

The usefulness of adaptive systems is not limited to teaching,
indeed, they promise to be of greater value in connection with
aptitude testing. By definition, a pair of inherently unmeasurable,
non-stationary systems, are coupled to produce an inherently
measurable stationary system. Of course, it is the set of adapted
problems rather than the exercise programme itself which con-
stitutes the test material, but the state of the teaching machine
which determines the array of problems, at each instant, can
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be asserted in terms of electrical potentials. From these we know
what changes are needed to produce a stable relationship between
student and machine, given a particular exercise programme and
a particular student, and there is some evidence to suggest that
these stability characteristics are a basis for predicting the
student’s subsequent performance. ‘
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7 The Evolution and Reproduction of
Machines

THERE 1s no mystery about machines that reproduce. From
Chapter 3 a machine is a state determined subsystem — the simp-
lest exemplar, a ‘Turing machine’. Turing himself considered a
further, so-called ‘Universal machine’ which is the same thing
equipped with an indefinitely large memory (an infinite tape with
positions for binary digits) and means for *writing’ its state into
this ‘memory’, shifting position, and reading the contents. He
showed that a universal machine can adopt any ‘writing” be-
haviour which could have been *written’ by any universal machine,
in particular, it can construct a pattern which describes itself.
Von Neuman later developed a theory in which the selective
operation of ‘writing’ is replaced by the selection of ‘standard’
components from a bag. Thereby a universal machine can as-
semble a pattern of components which is a replica of itself. So
reproduction in a logical environment is possible. The trick lies
in having a bag of the right components (for a {uller discussion
see Beer, or Lofgrew?, or the original papers®*). The Von
Neuman machine and its environment are commonly repre-
sented by the states of a computer, but if, as I do, you like a
mechanical analogy for the logical prerequisites of reproduction,
you should read one of the articles where Penrose®! supplies it.

A parent machine determines the orderly development of an
offspring from components in plentiful supply. If we add to this
picture:

(i) A source of variation, and

(11) A selective or competitive process that acts upon the

machines as a whole,
then successive generations may evolve. (i) implies that not all
replicas are perfect. To realize (ii) consider an environment
wherein some components are scarce. Now suppose that one
variant is at an advantage in the competition for scarce com-
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ponents — that it uses them in producing machines of a like
kind, and thus inhibits the development of other species. In a
Darwinian sense, the variant is better fitted for survival. But, for
sensible evolution, we also require that variants which are better
fitted have some property in common, that there is a recognizable,
evolutionary trend. The trend, of course, 18 derived frmn a
relation between the machines and their environment. Let us
assume an environment such that the best fitted machines have
the property of co-operative interaction between their parts (we
make our abstract model correspond with our notions of
Chapter 5). Then, as Burke points out,*® a success{ully evolving
species of machine is likely to construct, and make self-referential
‘statements’ in an hierarchy of metalanguages. In other words,
a member of this species will generalize about its own state and
construction. A ‘system’ developing in one of the evolutionary
networks we have already discussed is isomorphic with a member
of this species. _

Recall: the competitive element is introduced by a commodity
(energy, perhaps) needed in order to build up the connectivity to
mediate a system and maintain its activity. If there is not sufficient
of this commodity, a system does not survive. Further, 'ﬁhe Sur-
plus of the commodity is determined by a Feward vana:ble: 6,
which depends upon the behaviour of system in the evolutionary
network. In these conditions, when the petwork is used as a
controller, it becomes equivalent to say that ‘a system aims to
maximize &' and ‘a system aims to survive'.

In these conditions, also, a system (say, A) will evolve because
it encounters a situation which is undecidable in the object
language of its interaction with the controlled ass:e{nbly. Suppose,
for example, that 4, ‘decides’ about unitary entities and that no
unitary action will maximize @. Then A, has two alternatives
(since the possibility of remaining A, indefinitely can always be
excluded by adjusting the surplus), namely:

1. To evolve into system A,, such that the object language of
A, is a metalanguage in which the situation is decidable (perhaps
A, ‘decides’ about sequences of actions, and some sequence does
maximize 6), or |

2. To come apart, since there is insufficient of the necessary
commodity to maintain it. '

Of these, 1 is only possible if the existence of A, is rewarded
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in the same way that the existence of 4, must have been. So the
man or computer manipulating @ should, in fact, reward an
evolutionary trend A4,, A, ... rather than a particular system.
In order to do this, the trend must be recognized, which is much
the same as recognising the similarity criteria of Chapter 5. But
recall that the ‘trend’ is initially determined by a relation between
A, and the environment, ie. the network structure. So we
return to the dilemma of Chapter 5, the issue of what to “build in’.

However, there 1s one redeeming feature, which accounts for
the *autocatalytic effect” noted in Chapter 6. Over an interval
many systems evolve and the environment of any one system
becomes increasingly determined by this population and less by
the initial structure.* Now it is possible for an observer to make
sense of what goes on - to adopt a good rewarding procedure
— providing he ‘converses’' like the student in a teaching system.
But, as a result of this close coupled interaction he fashions the
system in his own image. |

The Self-Organizing Systems

In Von Foerster's department we studied the competition
and co-operation between evolving systems. The population is
rarely homogeneous; different species co-exist in dynamic equili-
brium. For various reasons it is particularly interesting when a
hybrid of several previously distinct species becomes more stable
than any one (the hybrid is dubbed ‘resonant’ by analogy with a
resonant molecule, such as benzene, where a hybrid form is more
stable than any of the classical descriptors. As with the molecule
it is important to realize that the hybrid is something ‘novel’ and
not an admixture of the descriptors). An evolving hybrid is a
self-organizing system, as defined in Chapter 3, in terms of its
relation to an observer, for an observer must continually change
his reference frame to make sense of it.T But, in this context, to

* The species determines its own environment. In natural evolution
this is the feature which distinguishes man. The most fitted variant is
somebody who is adapted to a man-made environment.

t Notice (i) The system evolves, hence is non-stationary, so an
observer must resort to averages @y over an ensemble of similar
systems. But resonance implies that no single criterion of similarity will
be adequate, - :

(i1) Since they can, in a sense, select relevant features of their environ-
ment, these systems might be used to replace the manager of Chapter 4,
and hence have practical importance,
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‘change our reference frame’ only means that we perform different
conceptual experiments, try to make sense of unitary actions,
sequences of actions and so on, in short, that we ‘converse’.
The rules of evolution and development are determined by
the connectivity of an albeit very flexible computer, a network so
constructed that the fabric form which it is made will be irrele-
vant. On the other hand, if we look at self-organizing systems in
the real world, their evolution and development is determined by
their fabric and because of this, ‘changing our reference frame’
comes to mean making physically different — often incomparable
— kinds of experiment.

Auerbach’s paper on the development of kidney tubules®®
illustrates the point. In the embryo the ureteric bud, which is the
precursor of a duct connected to the tubules in the developed
kidney, induces the mesenchymal cells to differentiate into a
tubule, which is a readily recognized structure. Experimentally
other tissues can be used to supply the inducing stimulus. After
a group of cells have been in contact with an experimental
inducing stimulus for 30 hours, the stimulus can be removed and
the tubule structure which has, by then, appeared will persist
and develop. We thus say that the control system ‘kidney tubule’
is ‘tissue stable’ for the organization that produces the visible
structure is inherent in the tissue. However, at this stage, it is
not inherent in the cell (as demonstrated by experiments involv-
ing disaggregation). But, ‘cell stability’, whereby cells have the
property of differentiating into bits of tubules, does appear when
the individual cells have been in contact with a stable tissue
somewhat longer. Hence, the control system ‘kidney tubule’
entails at least two mechanisms which are not only ‘different’
but of a different kind, investigable by different sorts of inquiry,
and if we had approached the matter without the benefit of this
work, we should have suffered srructural uncertainty about the-
kind of inguiry to make. However, a process of development
would still have been manifest. The system would have
seemed to us self-organizing. (I am using this work to make a
point. The entire mechanism is still unknown and Auerbach calls
the system ‘self-organizing’ even in the present state of know-
ledge.)

Development of an organism from a single germ cell into a
multicellular entity is a self-organizing system from any point of
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view, and I wish to contend that this self-organizing system is a
subsystem of the self-organizing system called ‘evolution’. The
statement is profound but, as I have put it, largely vacuous. It is
made precisely (in biological rather than cybernetic terms) by
J. T. Bonner who, for purposes of his discussion, adopts the view
that it is ‘development’ that evolves rather than the ‘organism’
(his book, The Evolution of Development® is essential reading).
Phrased differently, development takes place at all because of
two competing evolutionary requirements. The first, the need to
control the variability which comes from mutation, dictates a
unicellular form. The control mechanism is commonly sex,
though there are alternatives. The other requirement is for a
large multicellular individual which is best fitted to survive in its
environment. Evolution produces the mechanism called alterna-
tion of generations and the process of development from embryo
to adult.

Notice, we have seen no alternation of generations in abstract
evolutionary systems, though such an adaptation is conceivable
and an alternative mechanism, of the kind Bonner describes for
the slime molds, can be cited *® It is, after all, an adaptation to a
particular fabric, protein, and a particular environment.
The distinction between self-organization and life rests in fabric
and it 1s significant because we, ourselves, are made from the
same stuff as the things we are prepared to eall ‘alive’.

Abstract Approach

To complete the picture, there is Rashevsky's?® view of evolution.
The organism, regarded as a control system, can be mapped on
to an image wherein all metrical properties are discarded, but all
*structural’ relations preserved. The image will be a graph of the
kind we used to depict states, only, in this case, the nodal points
represent biological properties such as ‘feeding’ and ‘secretion’.
Rashevsky contends that the various graphs which have arisen
by evolution can be transformed into one another — which is
inconfravertible if we accept the regularity of the real world —and
are derivable from a primordial graph by repeated application,
representing stages in evolution, of a single topological trans-
formation 7, some parameters of which are variable. For
reasonable choice of T the primordial graph is a homomorph
of any later graph and it is possible to ‘work backwards’. Now T
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is unknown but presumably it can be discovered by judicious
comparison between the mathematical possibilities and the
biological facts in order to obtain a ‘best fit’.

Chemical Computers

In the energetic conditions of the real world protein is probably
the only fabric which exhibits the stability and variety needed
to maintain a self-organizing system. Life depends upon certain
wavelengths of light being available for photosynthesis by
plants, This energy can only be absorbed by a sub-set of possible
macromolecules and only a limited number of these match the
energy transfer systems of the required kind. But, given a different
environment, other fabrics will sustain self-organizing systems,
and I shall describe some artifacts made to illustrate the point
which have, incidentally, a promising industrial application. They
are chemical computers.

Chemical computers® arise from the possibility of ‘srowing’
an active evolutionary network by an electro-chemical process.
(D. M. MacKay has used the same process for producing
‘analogue’ connectiveelements in acomputing machine.) Consider
a very shallow perspex dish containing a moderately con-
ductive acid solution of a metallic salt, an agueous solution of
ferroussulphate, oran alcoholicsolution of stannouschloride, with
inert platinum wire electrodesa, fand X If o isenergized, a highly
conductive dendrite or thread of metal will grow from X towards
¢, by electrodeposition. For each surface element, electrodeposi-
tion must keep pace with an acid back reaction, that is tending to
dissolve the metal away, if the thread is to survive as a stable
entity. Assuming stability, growth occurs as in Figure 22 (i).

Now, if we energize i, growth may occur towards « alone, f§
alone, or if there is enough total eurrent, by bifurcation as in (ii).
At this stage [ is disconnected, but the subsequent growth of the
thread is permanently modified because the branch y which is
due to the intermediate energizing of § distorts the current distri-
bution. Hence, we get (ii1) instead of (iv) which would have
appeared if § had not been energized. This is one sort of ‘memory’
which occurs because a dendrite grows in an electrical environ-
ment determined by itself and its neighbours. Another kind of
memory Is demonstrated in (v), (vi), (vii) and (viii), and amounts
to reproduction. Assume the thread structure of (v) due to
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Fig. 22. Development of Thread Structures

previous manipulation of the energizing switch. Now this
structure could not possibly be due to the ff connection alone. Cut
the thread at y,/y, to form a gap. This gap, given current through
B, moves up the thread, metal dissolving at y, and depositing at
¥2. Almost complete regeneration is possible at (vi), (vii), (viii)
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which, simply because the thread structure is a large conductive
surface, is substantially independent of the outside environment —
in this case the setting of the energizing switch. We used these
threads to grow connective networks between ‘artificial neurones’
which energized the electrodes in place of the switches. (Plate 111
(1) (i1) (ii1) and (1v).) Since then we have concentrated upon ‘instable
threads’. The back reaction can be adjusted so that any thread is
continually breaking and being regenerated. These instable
threads perform the non-linear energy conversion of an artificial
neurone and, to cut a long story short, we no longer require the
‘artificial neurones’ assuch. Givensomeapproximation toa distrib-
uted energy storage, which is difficult, but possible, a dish of
solution on its own will give rise to the entire evolutionary net-
work —connections and active devices. The first system of this kind
was developed in collaboration with A. Addison at the University
of Illinois, and Plate 1II (B) shows some of these threads in an
experimental arrangement. Figure 23 1s a tracing of the impulse
output waveform from the arbitrarily placed sensory electrode

shown in Plate IIT (A).
MLUM
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Using total energy inflow or, in the recent model, concentration
of free metal ions as the reward variable @ it is possible to select
those systems which have an acceptable electrical behaviour and
reject others. But there is one trick you can play with this toy that
is impossible with the networks we have already discussed. In
those, there were components, with definite (even though primi-
tive) functions assigned to them. Here there is only raw material —
metal ions. Naturally we think of the raw material as stuff to
make connection, but that is our hunch. Suppose we set up a device
that rewards the system if, and only if, whenever a buzzer sounds,
the buzzer frequency appears at the sensory electrode. Now a
crazy ‘machine like this is responsive to almost anything, vibra-
tion included (components are made to avoid such interference),
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50 it is not surprising that occasionally the network does pick up
the buzzer. The point is this. If picking it up is rewarded, the
system gets better at the job and structures develop and replicate
in the network which are specifically adapted as sound detectors.
By definition, intent and design this cannot occur in an artifact
made from mll-spemﬁed components. It isanimportant property.
When the active elements of a hill climber meet an insoluble
problem, the uncertainty about which of several possible actions
to take is resolved by a dice throw. The thread, faced with the
same dilemma, must become one kind of thing or another — there
is no finite set of possibilities to choose between —and from the
observer’s viewpoint a structural uncertainty is resolved. This is
precisely the behaviour remarked upon by the earlier embroyolo-
gists — that development of a cell along a quantitative gradient
gave rise to qualitative change.

The trick works with many variables. In a crude way this is a
self-organizing system that can select those attributes of its
environment which it must sense in order to survive. Of course,
it is too crude to be useful. But improvements are coming.
Bowman® recently proposed macromolecules acting as trans-
mission lines, which would have the property in a manageable
form, and George Zopf is actively pursuing the topic at the
University of Illinois.

8 Industrial Cybernetics

THE chairman said °. . . our company is not its wealth, nor its
factories, gentlemen, the old lot or the new ‘uns’ (he adjusted his
tie), "these’ (he glared at the reading desk) ‘are mere trappmgs
Our company’'s a living thing, gentlemen. It grows.” He sat
down, flushed and wheezing. The executives clapped, excusing
the diction of a self-made man. They reckoned him old fashioned,
a bit poetic in his dotage. But, in fact, the self~made man had

told a revolutionary truth, as he had told it before, badly, and

without the faintest idea what to do about it. Had they listened,
and understoed, it would have shaken them to the bottom of the:r
incentive schemes and order schedules.

lts Impact
Stafford Beer,® 8% 8% 8% hag stressed this essentially cybernetic
concept; that industry is an organism; in a usefully expanded,
cogent and decisive fashion. He means us to take the statement
literally, not as an after-dinner analogy. A particular industry has
the same trouble in preserving its identity and survivingamidst the
flux of its environment as any animal. It either evolves or decays.
Having discussed the properties of organisms we know what to
expect, and 1t will be more profitable to dwell upon the impact
of Stafford Beer’s idea. To the accountant, for example, it means
that his model of the company, his precious double-entry stuff, is
but a tiny facet of the truth. Something like an increase in profit
is no measure for the health of an orzanism (he realized this
before, of course, and thought it odd — but did not mention the
matter). Nor is there any unique measure of growth, for it is the
growth of an organism, and that upsets the assumption that an
optimum condition can be achieved by some manipulation of sub-
optima such as ‘'maximize turnover’, ‘maximize productivity’ and
others. To the operational research people it means that their
models need rethinking. True, at a reflex Ievel, simple feedbacks
to simple operations, there is little change. But the organism,
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industry, has a vast redundancy of mechanism and the structural
certainty has gone. To the manager it means that management
cannot be efficient as well as authoritarian, It is an issue of per-
suasion, compromise and catalysis. He always knew that men and
machines were cussed. Cybernetics offers a scientific approach to
the cussedness of organisms, suggests how their behaviours can
be catalysed and the mystique and rule of thumb banished.

What about the engineer? Just now there is plenty of conven-
tional automation, but in a few years he will find this organism
disconcerting. After all, engineers are accustomed to computers
that sit in large, metal boxes, have sensory clements in a process
and effectors that they control. Amongst the next batch of com-
puters there will be some that are chunks of polymer, made to
exist inside reaction vessels, and catalyse reactions with which
they are in contact. The sensing and computing will not be
distinct and maybe the effectors will also form part of the same
thing.*

The Structure of Industry

We have argued the virtues of partitioning, hierarchical structure
and division of labour sufficiently to take their existence for
granted and only discuss how they should be brought about.
Now, in an organism an hierarchy will not be described by an
organization chart (at any rate, not of the currently drawn, in-
flexible kind, where A is responsible to B and C refers the matter
to D, taking action if E sends a copy to F). From the recent
literature it looks as though the men who draw these charts (and,
heaven forbid, even put them into practice) would agree. They
have reached the nasty-tasting conclusion that not every indi-
vidual does fit into a niche. Indeed, an organization composed of
individuals that do, is formally moribund. It is comforting to
realize that the glorified, stratified, feudalized empires of industry
work because the chart is disobeyed, that without the grace of local
imperfection the whole structure would be instable as a house of

. *A further possibility, amusing in its own way, is an animal com-

puter, which could be valuable for slow speed, esseptially parallel data
processing. Skinner once used pretrained pigeons®® as pattern recogni-
zing automata in a guidance mechanism, and they have also been used
in industry. Working along somewhat dzﬂ'erent lines Beer and I have
experimented with responsive unicellulars as basic computing elements
which are automatically reproducing and available in quantity.
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cards (or a brain without its reticular formation). For stability
by design rather than by default, the people who get things done
must be allowed to run from niche to niche and communicate
with their colleagues in real words, not duplicated advice notes.
I will go even further and say, in an efficient biological hierarchy,
cach member must have the possibility, however small, of
inverting the structure without leaving his niche to do so. I do
not mean ‘the office boy can rise to be manager’. I mean, ‘in
some unspecified conditions the office boy can take the mana-
gerial decisions’ — when that would be a fitting adaptation.

Now it is easy to cite some kinds of process where my proposal
is sheer nonsense. Mass production and routine data processing,
for example, are most efficient when rigidly organized. Very well,
then, have automata to do the stupid jobs that are entailed. A
robot is more reliable than a man and, by definition of the work
schedule, readily constructed. Any process best represented by a
production chart can be complerely automated. There arc even
robots for assembly jobs which used to be an exception to this
rule.

The point was made most elegantly by Norbert Wiener® in
The Human Use of Human Beings. Define ‘man’ functionally
(the alternative, as a *bag of chemicals’, I find unacceptable), and
he 1s atleast an adaptive decision maker. Too use him where neither
choice nor adaptation are called for is not 2 human use. Con-
versely, automation never put a man (in this functional sense)
out of work. If it does stop him plaving the robot so much the
better, for oo much imitation makes us robot like. In particular,
it is both distasteful and dangerous to regard man as a cheap
substitute for an automaton — dangerous because there isa vicious
circle and ultimately man will lose.

There still remains the question; who will pay the men who
used to play at robots? Overall, two possibilities occur. First,
the added efficiency of the process (demand for its product
assumed) makes it possible to sustain these people in more
human pursuits (there is some quantitative evidence in favour of
this possibility). Otherwise rethink the concept of efficiency,
and organize the process so that it is most efficient, given the
maximum utilization of human beings. This, I agree, does not
necessarily entail maximum short-term productivity, but 1
assume a certain social responsibility on the part of management.
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Decision Making .

Who or what can take managerial decisions? It is perfectly
obvious that managers are unable to deal with the problems of
modern industry. If you rig up a computer to give a manager
all the information he needs about the state of the factory, it is
necessary to include about a day’s lag — otherwise he decides in
a frenzy of misguided zeal that leaves the place in a shambles.
He is not stupid. On the contrary, he is a highly trained, intelli-
gent man. His decision capacity is simply overloaded. But, if you

cannot tolerate the lag, and, nowadays, we cannot, the manager

must be replaced.

An obvious solution lies in ‘Two heads are better than one’.
But, whilst true in a way, this adage was always defective. You
cannot add wisdom by adding heads on a committee. That is the
fallacy of team research (you cannot buy a research team. With
luck it grows, making its own common language and thriving on
personal interplay which has nothing to do with research).
I suspect it is also fallacy of managerial groups. '

How, then, can we combine the brains in the available heads?
First, can we do it? Yes. There are existence proofs. Research
teams that do work. Often enough husband and wife share a
common language and make jointly wise decisions. I have seen
the process also in groups of actors at club theatres, amongst
jazz musicians and in football teams. These are stable communi-
ties that make genuine group decisions. Of course, they play at
decision making all day long, and respond concertedly when a
familiar situation appears in the real world. The rapport between
horse and rider is not dissimilar; they decide together about the
terrain. But, I have never seen this efficient organization in
industry. The atmosphere is too earnest {maybe it must be). There
is something that makes us approach the paper mill with a
ponderous solemnity alien to a honky tonk. For all that, it may
not be impossible to recapture some of the requisite abandon,
by having managers play together via an adaptive machine.
By analogy, the managers ride the same horse and the terrain 1s
replaced by an image of their factory. At any rate, some serious
work Is in progress.

A second, closely related solution to the problem occurs when
the industry is, in any case, biologically organized. Then there is
redundancy of potential command. The whole system is inter-
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acting very closely indeed with the little microcosm of managers.
Now, in this situation, we can never say where a decision is made,
or that one bit of the whole melange is a control mechanism.
The best we can do is to point out a badly distinguished mana-
gerial group and say that decisive activity is probably dense in
this region.

Suppose that for some reason (size, speed, or elaboration)
this knot of dense decision making cannot be a group of men
but must be an evolutionary network. We have dwelt enough
upon its possible form. Now look at the much more important
question; given an evolutionary network, what would induce
you to trust it as a decision maker ? Not its cleverness, for it can
be as clever as we can afford. 1 believe our confidence can
only stem from our experience in conversation with it —and I
propose two different tests. In the first, acting as a potential
employee I should ask ‘Can I owe allegiance to this network ?°,
accepting it only if the answer 1s in the affirmative. Now, for my
own part, I cannot owe allegiance to a box of tricks; to a pro-
gramme — regardless of whether it is embodied in a computer or
worked out in stereotype by a human board. This attitude
‘allegiance’ 1s a relation between persons, and the object of it
must be an individual, or a group of people with its own person-
ality. I think I should credit the network with this quality only
in so far as it seemed to understand, even if it rejected, my
contribution to the decisions in hand.

Next, acting as its potential employer, I should interview the
network, tfaking its previous experience and behaviour into
account, But, more important than this is the guestion of whether,
in some sense, the network is like my image of myself being a
manager (this part of the interview is difficult, for there is no
verbal communication — but the essential requirement is that
the network be capable of its own kind of discourse beyond the
bounds of management). On this test, I shall accept the network
if and only if it sometimes laughs outright. Which, in conclusion,
is not impossible.

INDUSTRIAL CYBERNETICS
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Glossary

Ant:-ugrc:lnﬂ The process of arriving at a new kind of rule or logical
model.

ADAPTIVE CONTROLLER A controller that can adapt (or modify) its
control strategy (or programme of action).

ARTIFACT Devices constructed to simulate some aspect of behaviour.

ASSEMBLY A part of the real world selected for observation.

ATTRIBUTE An observable property of an assembly.

AUTOMATON (5ee ARTIFACT).

BINARY NUMBER A number, each figure of which can assume one of two
values, 1 or 0,

BRAIN STEM A lower part of the brain - at the top of the spinal cord -
which contains, amongst other things, the centres for respiratory
and cardiac control.

CATALYST A material which accelerates one or a few out of many
possible reactions. An autocatalyst is a catalyst produced as a
product of the reaction it catalyses. The word comes from chemistry,
but is used in cybernetics in connexion with all kinds of change in
the state of systems.

ceLL The building block from which organisms are constructed.
CHANNEL That part of a communication system along which messages
are conveved, or its mathematical representation.
cobpE A rearrangement of the signals that convey a message.
csgt:nftu. CORTEX A relatively undifferentiated higher region of the
r2in.
~ pepvucTion The process of working out the consequences of a given
- set of rules, or of a logical model.
- ENZYME A biological catalyst.
 EQUILIBRIUM A state of a system which keep certain properties invariant ,
~ The term includes not only static equilibria — an object at rest — but
also dynamic equilibria and statistical equilibria.
evoLuTion Either the process observed in nature, or a comparable
process occurring in an artifact.

FEEDBACK Return of a signal, indicating the result of an action, in
order to determine further actions.

~ GENE A unit (in fact, a collection of *nucleic acids’) which conveys the
. hereditary information for building an organism (the genes are
arranged on chmmusﬂnms in the nucleus of each cell).
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GESTALT Some property — such as roundness — common to a set of
sense data and appreciated by organisms or artifacis.

HOMEOSTASIS The regulation of variables important to the survival or
well being of an organism.

HORMONE A specific chemical released by specialised tissues in an
organism, the presence of which acts as a2 signal to other
tissues.

INDUCTION Making inferences from given evidence, for example, the
evidence provided by experimental observations.

INFORMATION A measure of selection amongst a given set of possibili-
E Sometimes a measure of the extent to which uncertainty is
ooed.

MATRIX An array of numbers used, in mathematics, to specify the
transformation of a vector.

METALANGUAGE A descriptive language such as the language in which
an observer describes a discussion between two participants that
takes place in an ‘object language’.

NEURONE A cell in the central nervous system with the specialized
function of signalling. An artificial neurone is a device which
simulates a few of the characteristics of a real neurone.

NUCLEUS A dense regmn in the cell concerned, amongst other things,
with the control of protein synthesis and rcpmductmn.

PROBABILITY A numerical measure of certainty with various technical
usages.

RETINA An array of light receptors, either in the eye of an animal or
forming part of an artifact.

REFERENCE FRAME A collection of comparable systems.

SET, SUB-SET Any collection of objects or entities.

SERVOMECHANISM A mechanical device using negative feedback and
often maintaining a predetermined or remotely adjusted motion or

position.
STABILITY A condition in which a system is controllable.
STATE A recognizable condition of a system.

STATIONARY SYSTEM A system which is in dynamic or statistical equili-
brium. Its statistical characteristics do not change. In a non-station=
ary system the statistical characteristics do change.

sYNAPSE The organized junction between neurones.

sysTem Roughly, a collection of states together with the rules whereby
they change, but it is a technical term. >

TAUTOLOGOUS ARGUMENT is circular
TELEOLOGICAL ARGUMENT entails the idea of purpose
TRANSFORMATION A mathematical expression of change.

ULTRASTABILITY The form of stability apparent in an adaptive system,
in particular, an adaptive controller.
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VARIABLE The changeable quantity that appears in a mathematical
relation. Attributes of an assembly are identified with the variables
in a mathematical model to form a system.

VARIATION Production of novel forms or structures, in natural evolution
the production of mutants.

| VARIETY A measure of uncertainty or the amount of selection needed

to remove the uncertainty.

_ VECTOR An ordered set of numbers that specify the valves of variables.
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Appendix I

Distinction between structural and metrical aspects of information
(see Chapter 2, page 20)

The distinction between the structural and metrical aspects of
information was first made by Gabor and generalized by MacKay (18),
who developed a comprehensive theory of scientific information on
this basis. We are using the terms ‘structural’ and ‘metrical’ Jess pre-
cisely than MacKay (but in a closely related fashion) in order to de-
mark the gualitative and quantitative content of a statement about
the world. Take a statement “The boiler pressure is 100 Ib, Ib./sq. in.
to the nearest unit’, It has, for its gualitative (or structural) content, a
summary of what kind of result we should expect, namely one of the
possible Readings on a pressure gauge. We are not measuring a volume
or a surface tension. Nor can we expect indefinitely accurate evaluation
of pressure. The quantitative or metrical part of the statement says what
the result of the measurement actually is, namely 100 1b./sq. in. More
generally, ‘structural information’ specifies the events which may occur,
*metrical information’ those events in this set which do occur. But at
this level some caution is needed.

(i) There is a definite limitation to the smallness and specificity of
events which can be measured in a given interval dr (the limitation
takes the form of an uncertainty principle. We avoid explicit discus-
sion of this principle by stating the initial axiom, and assuming that
separate observations are spaced apart at least 4r).

(i) Given a set of events, different orders of measurement are
possible (corresponding to the mathematical model in which the
events are identified) (19). It is always possible to name the events. I
there are neighbourhood relations between elements in the event set
the set forms a space in which these elements are points. There may
or may not be a measure on this space, 1.c. a numerically expressed
distance between the points.

Appendix 2

Choice of reference frames (see Chapter 2, page 23)

Although the reference frame depends upon the observer, his choice
is conditioned by all his previous experience and by convention. We
have, in science, rather stereotyped ways of looking at the world, and
the advantage of adopting them whenever possible has already been
pointed out - the measurements ar¢ comparable —and the systems
built up in the reference frame are communicable. A reference frame
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such as the hypothetico deductive framework of physics also has a
highly structured U and the results of confirming or denying an hypo-
thesis are maximally informative. The reference frames of biology are
less so, of psychology less still (consider the status of Tolman’s inter-
vening variable equations) and obscrvations are correspondingly less
informative. Further, in the behavioural sciences not all measurements
are comparable. Nor are all systems (at the present state of knowledge
we cannot strictly compare a Paviovian system, a Hullian and a
Hebbian system, not to mention the systems of psycho-analysis,
though we may become able to compare them if a unifying theory is
developed. As Nagel (22) points out, the construction of a translation
language commoenly entails theoretical and empirical advancement.
The simplest form of empirical discovery is a correlation between
events discerned in two previously incomparable reference frames).
Finally, the reference frame of the cloud shadows world 1s less struc-
tured than any of these. The observer cannot help it for cloud shadows
are not so well behaved as springs and spheres. They dissolve and
reappear, whilst they are in motion, and the ideas of continuity,
embedded in an elaborately structured U would lead to a manifestly
implausible hypothesis. This observer is looking at a very black box.
If he could see the clouds rather than their shadows, he would be better

off, though clouds are bad enough.

Appendix 3

Transition probability matrix (see Chapter 3, page 43)

P is an n.n. matrix with n® entries pyand Zp;= 1 rows and columns
corresponding with the states. J(z)is a column vector. Each row in the
matrix represents the probability distribution obtained by sclecting
the state in correspondence with this row, as we do in multiplication
with the column vector J{r). The state of a Markovian system can be
represented as a point in a probability space with n co-ordinates
P;s. Ps. - - - p* one to each state. This space should not be confused
with the phase space with m co-ordinates related to the attributes.

Appendix 4

Ergodic Systems (see Chapter 3, page 45) _ :
Four basic kinds of statistical equilibria are possible depending upon
the behaviour of the powers of P. .

(i) If the powers of P cease to change as r is increased so that
pr— Pr +1 the probability distribution becomes invariant, that is,
p.(r) = pdr+1) = p*. Thus the state of the Markovian system 1s
invariant and it can be shown that the values in the distribution p* are
independent of the initial state i. But any represenfaiive system can
move from any state to any other state. In the phase space the'stqta
points of the ensemble are in continual motion, because a representative
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system can always reach any of the states (none of the transitions are
impossible), the average population, at any instant, being determined
by p*. The equilibrium is called ergodic and the set of states which can
be visited (in this case all the states) i1s called an ergodic set. Further
the system is called regular, for each of the possible transitions can
take place at any instant. A case of special importance occurs when

1.3, ... 1 : :
pr= Ei E’ = and the state points of the representative systems are

evenly distributed in the phase space.

(ii) If the powers of P form a cycle so that Pr & Prtl but Pr = Prt«
for n>u the equilibrium is ergodic and cyclic. In this case there are
some 0 entries in P" which move around as r is increased. Hence, a
representative system can reach any state, but maybe only in several
IMIOVES.

(iit) Other than ergodic, states are called transient states. If these
exist there may be several different equilibrial ergodic sets. A transient
state must eventually be vacated so the state of the system will eventually
be one of the ergodic sets, but its probability of ending up in a particular
one does now depend upon the initial state.

(iv) One or more ergodic sets include only one state, aptly dubbed a
“trapping state’, for according to the argument cited above, any repre-
sentative system must end up in a single ‘trapping’ state.

There is a further discussion of statistical equilibria in a paper by
Von Foerster (*7).

Appendix 5

Information Theory (see Chapter 3, page 45)

It is convenient to think about the behaviour of organisms and automata
in terms of communication and computation and Information Theory.
L et us briefly review some pertinent aspects of this field.

The Different Information Theories

There is still a significant difference between two groups of information
theorists. Following Shannon and Weaver, information is a quantity,
a number of yes - or - no decisions, called bits, sufficient to select one
message from an ensemble of messages in a predetermined code :
whereas, following Gabor and MacKay, a guantity of scientific
information has two aspects. The first, or logon content, is determined
by the question asked and the second, or metron content, measures
the assurance, and so determines the possible precision of measure-
ments. The scientific information is given by Shannon’s measure when
there is but one metron per logon; that is, when the ensemble 1s not that
of science in general but of an established code.

A Techrical Usage of the Word *Meaning’

Any event that can be detected by an organism or a machine may
exercise some selective function upon the ensemble of transition
probabilities of the behaviour of the detector (it operates upon the
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statistical parameters of the system representing the detector). This
function is, in Mackay’s (31) words, its meaning.

There is a particular case we shall use later. Suppose the behaviour
of a human being when he adopts one attitude is determined by a
transition probability matrix Py, when he adopts another by a transition
probability matrix P,, and that a set P of descriptive matrices encom-
pass a sensible part of his behaviour. Now, to say the stochastic system
representing a man can be described in this way also says it is partition-
able. Hence we consider a selective operation F* (as in the discussion
of Chapter 3). Now F* may be externally controlled by some system to
which the man is coupled - say, for example, an instructor—and in
this case certain messages from the instructor which lead the man to
change his attitude induce a selection upon the ensembie P. By defi-

_ nition, the meaning of such a message is its selective function, with
respect to P. Notice, the meaning entails the relarion between the mes-
sage source and the recipient.

Shannon’s Statistical Information Theory _ |

The basic model for statistical information theory involves a source,
channel and receiver. When dealing with such tenuously specified
objects as organisms it is particularly important to avoid facile analogy
and keep within the limitations of a rigid model. The statistical measure
applies only to this model; it is computed by an outside observer (not,
for example, by the organism even if the organism is itself another
observer) and the model is defined in his metalanguage. Information is
a quantity of selection. The nature of the entities selected, like the
issue of ‘meaning’, does not enter into the theory. .

The source is an ergodic process with » states. State fransitions
select symbols (letters, words, dots and dashes) from a well-defined
alphabet for transmission along the channel. .

First, assume independence of selections. If the receiver is aware of
transition probabilities pi, i = 1, 2, . . . n (and ergodicity guarantees
I; that converge to p;) the information which can be delivered by the
source will _

V= —..Ei‘p; . Log, p: per 4t or per selection.

¥V is also a measure of the amount the receiver’s uncertainty about
the source is reduced by reception of messages. If the states are equally
likely to occur p; m%and V = -Log,.n which is its maximal value. If,
on the other hand, the receiver has knowledge of sequential dependen-
cies the int‘nnmtiur;{ which can be delivered is reduced. Taking two
stage dependencies alone .
yr- F}Epnpfi Log,p* :

wherethej=1,2,...n

The messages from such a source are called ‘redundant’ (and the

where Vs is the maximum information the source

ratiol —

could deliver is called the redundancy). Due to its statistical knowledge
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the receiver may deem certain messages ‘inconceivable’ and, within
limits, can compensate for imperfections which exist in any real channel
and distort any real message.

Take written language, for example, where we automatically regard
the word ‘commuxications’ as a misprint of the word ‘communications’.
The original message has been distorted in the channel of the printed
page but because the receiver is aware that the probability of 'x" after
u' mﬁ!g: and of ‘n” after ‘o’ is rather high the distortion can be plausibly
rectl

Ideally, a communication channel should effect a one to one trans-
formation of messages. Distortion implies a many valued transforma-
tion and can be represented as the introduction of irrelevant signals
or 'noise’ which render a relevant messapge — i.c. one from the source -
ambiguous. If the 'noise’ i35 not wholly unrestricted its effect can be
minimized by suitable coding schemes.

Different Forms of Signal

We commonly divide signals, somewhat arbitrarily, into those which
are continuous, like the sound of speech or its electrical transform in
telephony, or the concentration of a specific chemical *hormone’ in the
bloodstream, and those that are discrete, like the dots and dashes of
Morse telegraphy or the pips of radar. A precise transform of a con-
tinuous signal requires instruments equally precise and consequently
expensive; and no combination of them permits us to compute the
value of a variable bevond the precision of the least precise component.
Our only hope of accuracy lies in the repititious nature of the messages
themselves. Discrete signals carry with them greater assurance, for the
instrument only needs to decide which one of a few signals occurred.
The indifference to the exact size of the signal may replace repetition
of the signal, for the value of its amplitude can be ignored except for
the decision of whether or not it is less or greater than a single value,
the threshold of the component. If it trips a relay we may combine it
with others to compute as precisely as we will, and the components
need only be good enough to make the decision, and are, consequently,
cheap. Nature employs them in brains and man in his digital computers.
Generally the discrete signals leave less uncertainty about their source
than continuous signals both for organisms and for machines. Various
coding schemes, more or less efficient, more or less fallible can be used;
for example, in a discrete the intervals between individual pips
may or may not be a signal and able to convey information. Brains, like
machines, appear to use several schemes in organizing their behaviour.

Appendix 6

A Markovian System (see Chapter 3, page 46)

A system which is Markovian when observed in » states may not be
Markovian if the observer combines some of his states and inspects a
less detailed image. 1et D;, D;, be any combined states, for example,
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let D:=(1,2) and D; = (3,4) where 1, 2,._k..n, are states of the
original Markovian system with transition matrix P. Now P is said to
be ‘lumpable’ ** with respect to the chosen combinations of states, if
piD; 8 is the same for each original state &k in Dy If P 18
lumpable the less detailed ‘lumped’ system P* is also a Markovian
system (this is analogous to the homomorph of a state determined
system which is always another state determined system). Expansion
‘of a Markovian system to take account of sequential dependencies is

reversed by lumping.

Appendix 7

The Neuristor (see Chapter 5, page 80)
Crane has recently worked out the logical possibilities of an active

transmission line, wherein an impulse is transmitted at the cost of
locally stored energy. When energy is dissipated it gives rise to a
sensitizing wave that alters a non-linear characteristic of an adjacent
element of the constructional medium leading to further local dissi-
pation. It is called the ‘Neuristor’, since a nerve fibre is a special case
realized in an aqueous medium. He shows that all Boolean and proba-
bilistic functions can be computed using ‘neuristor’ circuits. If the
elements in Beurle’s network are indefinitely reduced they become,
with suitable choice of parameters, elements in a neuristor network.
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