
Programming And Animating
On The Same Screen
At The Same Time

originally printed in Creative Computing, November 1980

by Paul Pangaro

Note: This article was first published in Creative Computing’s issue dedicated to
Actor Languages and edited by Ted Nelson. This text is unchanged and the
figures are scanned from the original magazine. The text was converted by an
OCR process. —Paul Pangaro, pan@pangaro.com

I think there is much more work to be done in the area of matching the
programmer's approach to the software environment, and I spread this
philosophy whenever I can. My focus in this article is the importance of matching
the concept of a system to a sensible programming structure, for ease of
translation from idea to executable software.

This has an important bearing on the problem of conceptual clarity -especially
clarity in multi-process simulations. Multi-process systems are of increasing
interest to computerists, for they are closer in spirit to the complex
environments which we encounter in real life, and very different from the simple
checkbook programs or Adventure games. So, in a Space War I have
independent ships, missiles, heavenly bodies — each affects the others, all must
be processed every time step. This is where Smalltalk (and other actor-based
languages) make implementation so straightforward. The language itself
contains constructs for multiple processes and, most importantly,
communication structures between them. It is substantially easier in a language
with multi-process programming facilities already built for it. Concepts like Class
bootstrap the programmer into the bliss of specifying behaviors directly and
without repetition. (In Basic, arrays of objects would be required, with explicit
code to scan the arrays, pass parameters, test for conflict; all processing having
to be under the programmer's elaborate and cumbersome control.) Actor
languages also allow you to program faster and help you find those structures
which preserve, and are sympathetic to, your own personal approach.

 I came upon Smalltalk several years ago and was struck by the intelligence of its
general philosophy - with one significant reservation. If one is interested in multi-
object simulations for graphical display (a premise of Smailtalk's originators),
then why am I forced to continue specifying my instructions in a linear,
character-by-character, typed language?

Moreover, I want to make pictures with the computer, so why couldn't a system
be made where the programs themselves were pictures (or at least two-
dimensional things)? Might we not blur the distinction between programming and
animating?

I was fortunate to be at a research laboratory at MIT that had both the facilities
and the expertise to explore this idea. The result of this collaboration was a
system called EOM, whose name has lost its historical meaning. EOM was
essentially an actor language, but one in which interconnection of actors by
messages was visually configurable. Our implementation used a lightpen on a
vector display with menus for programming and scripting animations.

The fundamental idea of EOM was that all programs are two-dimensional scripts,
whose graphical nodes themselves stood for executable programs. Two aspects
were both controlled from the screen: the data paths of the program, and the
graphics of the intended animation.

Our script convention of data flow is that that lines drawn into the top of a node
are inputs, and lines from the bottom outputs. Such links are the paths data
flow.

First let's look at a straight program example:

The script in Figure I simply moves a point diagonally across the frame. The node
time outputs a value — an ascending integer — as a function of absolute time in
the sequence. (This value is essential a frame number.) This value takes a split
path to both the x and y input of point_it. The object point_it now sends two
values (in this case, its inputs) to screen, an actor which displays it.

The real advantages for graphics are to come when we add in picture elemetsL
Consider the following script.

This program will produce a box sailing across the frame. The outputs of box are
essentially its shape and position which change. These variables are repeatedly
sent to sky. The position of the word "sky" indicates the highest point the box
is to reach.

The box here is like a subroutine, which might be defined like this:

The () nodes indicate positions on the screen; their output is therefore their
positions x,y. Thus to change the shape of the box, you may grab any of the ()
nodes by lightpen and move where you like, defining the new shape.

The group node assembles the positions and outputs them from the subroutine.
(The five connections to group complete the closed figure of four points and
four lines.)

The here node happens to output a position also: in this case, the x,y position of
the node box in Figure 2. This is passed as output out of the box subroutine,
and linked to the input of sky (in Figure 3) which uses it to fix the initial position
of the box that appears in the animated sequence.

Thus moving the position of the box node at the top level changes the initial
position of the box in the animation — a simple change which does not require
the usual calibrating and measuring: 'The box is too far to the left by 10%, the
x,y are 0 to 512 so we must add 50 units to the x position which is currently
120 so the new position is 170, type that in . . . " None of that nonsense — just
grab the box and move it to its new position. I cannot imagine anything simpler.

The position of sky in the upper level is also significant, since it is programmed
to determine the precise trajectory of the box. The person node is simply a
metaphor, for it is defines thus:

This "person" takes all its inputs and displays them on the screen: I see this as
answering the question of whether a tree failing in the forest makes a sound
even if nobody is there to hear it.

The system was found by users to be most pleasing to interact with, and was
extremely helpful in animation production. (We managed to film sequences for
the science series NOVA, under the usual absurd production schedules, for which
the system was superb.)

As an environment for education, EOM has the advantage that a student can
perform many simulation experiments, knowing nothing about Cartesian
coordinates or programming. Given a set of simulation models, all possible
degrees of freedom can be expressed graphically as described above, making
interaction simple. For the knowledgeable student, the models themselves can
be manipulated, building on the uniform and extensible environment.

Alas, after many months of glory the system died when the hardware
configuration was dismantled for newer research, and all that we learned must
await another propitious time for further development. Its spirit is carried
forward by many, and Henry Lieberman at the MIT Artificial Intelligence
Laboratory has extended the concept substantially with his Tinker system.

- end -

