Models for Innovation and Interaction

Paul Pangaro, Ph.D. CTO, CyberneticLifestyles paul@cyberneticlifestyles.com

convention convention

convention

convention convention

(a bit of luck) **preparation** aids **insight (seeing opportunity)** (immersion)

a model of innovation

Copyright © 2007

Dubberly Design Office 2501 Harrison Street, #7 San Francisco, CA 94110 415 648 9799

Institute for the Creative Process at the Alberta College of Art + Design 1407-14 Ave NW Calgary, AB Canada T2N 4R3 403 284 7670

a model of interaction participative systems

() C,

outline

- i. present a hypothesis
- ii. sketch a framework
- iii. propose a research direction
I. present a hypothesis

participants in interaction

- act on their own
- behave in complex ways that make sense to us

increasing value

- interact with us directly
- work with us in achieving our goals
- modify their own goals
- partner with us in the creation new goals

developing a model of interaction

to understand existing interactions with participants, and to propose new and more interesting ones, we need a framework to characterize:

- autonomy
- variety
- engagement
- collaboration
- goal-setting

hypothesis

II. sketch a framework

- define an architecture of goals
- characterize "participative systems"
- compose systems of users and artifacts
- increase system variety

categorizing goals — single-loop system

detects and reacts

- thermostat senses temperature = $65^{\circ}F$
- compares to 70°F setpoint
- turns on heat

categorizing goals — single-loop system

detects and reacts

- sense current state
- compare to fixed goal
- act

person resetting a thermostat

- wants to be comfortable—second-order goal
- ...by setting thermostat to 70°F—first-order goal
- ... in response to feeling hot, cold, etc.

dinner with friends

- wants to eat Italian food—second-order goal
- ...deciding which one—first-order goal
- ... in response to hassle factors of travel time, parking, etc.

- how long to drive there?
 where to park on arrival?
 how noisy is it?
- how good is the food?

dinner with friends

- wants to eat where??—second-order goal
- ...deciding which one—first-order goal
- ... in response to hassle factors of travel time, parking, etc.

adaptive cruise control

avoid collisions with other vehicles—second-order goal

- ... by varying setpoint of cruising speed—first-order goal
- ... in response to changing speeds of vehicle in front

driver's set speed
speed and proximity of other vehicles

Pask's Musicolour

- avoids boredom—second-order goal
- ... by varying mapping of sound to light—first-order goal
- ... in response to changing inputs from musician

pitch range of input length of time in that range

Pask's Keyboard Trainer

- maintains efficient training—second-order goal
- ... by varying difficulty of exercise—first-order goal
- ... in response to current skill level of learner

correctness of typing
evenness of rhythm

single-loop interactions

single-loop systems *interact* while trying to achieve their own, unchangeable goal

double-loop interactions

double-loop systems go beyond mere *interacting* and *participate* in modeling and changing their goals

- person resetting thermostat
- adaptive cruise control
- friends deciding on dinner
- Pask's machines

double-loop interactions

double-loop systems go beyond mere *interacting* and *participate* in modeling and changing their goals ...that is, they are capable of *learning*

- person resetting thermostat
- adaptive cruise control
- friends deciding on dinner
- Pask's machines

example of double-loop learning

Gordon Pask's Eucrates TEACHI

participative systems

double-loop systems *participate* with other systems *implicitly* when goals are changed because of another's actions

• adaptive cruise control plus driver actions

participative systems

double-loop systems may *participate explicitly* with other double-loop systems in goal-setting by conversing about what is possible & desirable

participative systems — definition

- modify themselves as a result of interactions
- participate in changing their goals
- influence other double-loop systems to test and modify their goals
- participate in the creation of new possibilities

only double-loop systems are participative

participative systems — collaboration

when double-loop systems interact with other double-loop systems for the **same** goals, they **collaborate** with each other

designing interactive systems humans and technology

User may be single- or double-loop Artifact may be single- or double-loop

system variations interactive media

increasing system variety double-loop

III. propose a research direction

- categorize current research
- propose research metrics
- design demo architecture
- formulate initial questions

categorize interactive systems

participants in interaction

- act on their own
- behave in complex ways that make sense to us

increasing value

- interact with us directly
- work with us in achieving our goals
- modify their own goals
- partner with us in the creation new goals

application of participative systems

metric of interactivity

evaluate and compare interactive media, learning environments, exhibitions, online experiences

guidance for improving interactive experiences

urge design changes in the direction of double-loop systems with increased variety

Models for

Innovation and Interaction

Paul Pangaro, Ph.D. CTO, CyberneticLifestyles paul@cyberneticlifestyles.com

http://pangaro.com/CUNY2008

convention

Innovation Concept Map and Play Concept Map © 2007 Dubberly Design Office and Alberta College of Art and Design Participative Systems © Paul Pangaro 2000-2008